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ABSTRACT

Turn-Taking and A rmative Cue Words in
Task-Oriented Dialogue

Agustn Gravano

As interactive voice response systems spread at a rapid pacproviding an increasingly
more complex functionality, it is becoming clear that the challenges of such systems are
not solely associated to their synthesis and recognition gaabilities. Rather, issues such as
the coordination of turn exchanges between system and useor the correct generation and
understanding of words that may convey multiple meanings, ppear to play an important
role in system usability. This thesis explores those two isgses in the Columbia Games
Corpus, a collection of spontaneous task-oriented dialoges in Standard American English.

We provide evidence of the existence of seven turn-yieldingues | prosodic, acoustic
and syntactic events strongly associated with conversatinal turn endings | and show that
the likelihood of a turn-taking attempt from the interlocut or increases linearly with the
number of cues conjointly displayed by the speaker. We prese similar results related
to six backchannel-inviting cues | events that invite the in terlocutor to produce a short
utterance conveying continued attention.

Additionally, we describe a series of studies of armative cue words | a family of
cue words such akay or alright that speakers use frequently in conversation for several
purposes: for acknowledging what the interlocutor has saidor for cueing the start of a
new topic, among others. We nd di erences in the acoustic/prosodic realization of such
functions, but observe that contextual information gures prominently in human disam-
biguation of these words. We also conduct machine learningxperiments to explore the
automatic classi cation of a rmative cue words. Finally, w e examine a novel measure of
speaker entrainment related to the usage of these words, stving its association with task

success and dialogue coordination.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The last few decades have withessed considerable advancestéxt-to-speech (TTS), auto-
matic speech recognition (ASR) and other speech technologs. Consequently, applications
based on interactive voice response (IVR) systems have spad at a rapid pace, and their
functionality has become increasingly more complex. Howear, interactions with state-of-
the-art IVR systems are often described by users as \confusig" and even \intimidating".
As synthesis and recognition capabilities continue to impove, it is becoming clear that such
negative judgments may be found in other aspects of the systas as well.

A possible explanation for part of the unsatisfactory user &perience is coordination
problems in the exchange of speaking turns between system dmuser. For example, currently
the most common method for determining when the user has yieled the speaking turn
consists in waiting for a long pause. However, this strategyis rarely used by humans,
who rely instead on other types of cues, including syntactic prosodic and acoustic ones,
to anticipate turn transitions. If such cues could be modelel and incorporated into IVR
systems, it would be possible to make faster and more accuratturn-taking decisions, thus
making interaction more uent.

Another dimension of spoken language that is important for MR systems to model are
expressions such aby the way however or after all that humans use frequently for struc-
turing discourse and shaping conversation, rather than formaking a semantic contribution.
A particular subclass of such expressions is especially fygent in task-oriented dialogue:

individual words such asokay, yeah and alright, which we term affirmative cue words
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These words may be used in conversation for several purpose®r acknowledging what the
interlocutor has said, for displaying interest and continued attention, or for cueing the start
of a new topic, among others. IVR systems lacking a model of tb usage of these words are
likely to run into communication problems, either by producing them improperly and thus

confusing the user, or by misunderstanding the users' prodctions.

As we progressively understand and incorporate these and ber factors into our mod-
els, the quality of IVR systems should tend to improve, appraching human behavior.
Bearing this long-term goal in mind, the present work repregnts a comprehensive attempt
to (i) model contextual, acoustic and prosodic cues for anttipating the end of speaking
turns, which may aid conversational partners in engaging insynchronized conversation; and
(i) characterize the contextual, acoustic and prosodic dierences in the realization of af-
rmative cue words, which may aid listeners in disambiguating their meaning. Our hope
is that it will later be possible to incorporate the resultin g models into IVR systems, thus

improving their performance.

This work makes no strong cognitive claims about the degree foawareness of speakers
when producing any of the mentioned cues, or about the degreef awareness of listeners
when perceiving and/or using such cues. We do not propose a m&al model of the inter-
actions between conversational partners. Rather, our goatonsists merely in nding and
describing associations between observed phenomena (suak turn-taking decisions) and

objective, measurable events (such as variations in feat@s such as pitch or intensity).

Additionally, this study brie y explores a promising research topic in Computational
Linguistics that investigates how speakers tend to adapt treir speech to match their con-
versational partners'. We examine a novel dimension of thisphenomenon related to the
usage of high-frequency words, including a rmative cue words, and show its association
with task success and dialogue coordination, results that guld have a substantial impact

on the quality of IVR systems.

All experiments described in this thesis are performed on te Columbia Games Corpus,
a collection of spontaneous task-oriented dialogues in Stadard American English (SAE).
Thus, our conclusions may not necessarily generalize to o#r populations; e.g. to other

conversation genres, or to other English variants. Future esearch should verify the validity
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of our ndings in di erent settings. However, note that, sin ce most IVR applications are
task-oriented, our results should apply at least to such syems.

This thesis is organized as follows. Part | introduces the Clumbia Games Corpus,
describing how the data were collected and subsequently amiated. Part |l presents statis-
tical studies aimed at identifying individual and complex cues for anticipating conversational
turn endings. Part Il describes a series of experiments ontte production and perception

of a rmative cue words.
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Chapter 2

Corpus Description

The materials for all experiments in this thesis were taken fom the Columbia Games
Corpus , a collection of 12 spontaneous task-oriented dyadic conveations elicited from
native speakers of Standard American English (SAE). The copus was collected and anno-
tated jointly by the Spoken Language Group at Columbia University and the Department of
Linguistics at Northwestern University, as part of an ongoing project of prosodic variation
in SAE (NSF 11S-0307905). The following sections describette collection and annotation
processes. Appendix B provides additional information, irtluding the complete instructions
screens shown to the subjects and the full sets of images uséu each game. The Games
Corpus was originally designed to test a set of hypotheses garding how accentuation pat-
terns are aected by grammatical function and information status of discourse entities.

Appendix B also describes such hypotheses in detalil.

2.1 Corpus collection

In each session, two subjects were paid to play a series of cputer games requiring verbal
communication to achieve joint goals of identifying and movng images on the screen. Each
subject used a separate laptop computer and could not see thecreen of the other subject.
They sat facing each other in a soundproof booth, with an opage curtain hanging between
them, so that all communication was verbal. The subjects' sgech was not restricted in

any way, and it was emphasized at the session beginning thathie game wasnot timed.
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Subjects were told that their goal was to accumulate as many pints as possible over the
entire session, since they would be paid additional money foeach point they earned. The

complete script read to the subjects at the session beginngnis available in Appendix B.1.

2.1.1 Cards Game

Subjects were rst asked to play three instances of the Cardgiame, where they were shown
cards with one to four images on them. Images were of two size@mall or large) and
various colors, and were selected to have descriptions asiged and sonorant as possible
(e.g., yellow lion, blue mermaid), to improve pitch track computations. Appendix B.3 shows
all the images used in the Cards games, arranged as they weregsented to subjects on
their screens. There were two parts to each Cards game, eachitiv di erent rules, but both

designed to test the same hypotheses.

(@) (b)

Figure 2.1: Sample screens from the Cards Games.

In the rst part of the Cards game, each player's screen displayed a pile of 9 @0
cards (Figure 2.1.a). Player A was asked to describe the topard on her pile, while Player
B was asked to search throughhis pile to nd the same card, clicking a button to indicate
accomplishment. This process was repeated until all cardsiPlayer A's deck were matched.
In all cases, Player B's deck contained one additional cardhat had no match in Player A's
deck, to prevent subjects from not describing the nal card.

In the second part of the Cards game, each player saw a board of 12 cards on the sen

(Figure 2.1.b), all initially face down. As the game began, he rst card on one player's (the
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Describer 's) board was automatically turned face up. The Describer wa told to describe
this card to the other player (the Searcher ), who was to nd a similar card from the

cards on his board. If the Searcher could nd a card depictingone or more of the objects
described by the Describer, the players could decide wheth¢o declare a match and receive
points proportional to the numbers of objects matched on thecards. At most three cards
were visible to each player at any time, with earlier cards béng automatically turned face

down as the game progressed. Players switched roles aftera@dacard was described and
the process continued until all cards had been described. Tdplayers were given additional
opportunities to earn points, based on other characteristts of the matched cards, to make
the game more interesting and to encourage discussion. Themplete instructions are given

in Appendix B.1

2.1.2 Objects Game

After completing all three instances of the Cards game, suldcts were asked to play the
Objects game, which we describe in this section. As in the Cals game, all images were
selected to have descriptions as voiced and sonorant as pdse. Appendix B.4 shows all
the images used in the Objects game, arranged as they were mented to subjects on their

screens.

Figure 2.2: Sample screen from the Objects Games.

In the Objects game, each player's laptop displayed a game lawd with 5 to 7 objects
(Figure 2.2). Both players saw the same set of objects at theame position on the screen,

except for one (thetarget ). For the Describer |, the target object appeared in a random
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location among other objects on the screen; for thé-ollower , the target object appeared
at the bottom of the screen. The Describer was instructed to @scribe the position of the
target object on her screen so that the Follower could move & representation to the same
location on his own screen. After players negotiated their lest location match, they were
awarded 1 to 100 points based on how well the Follower's targelocation matched the
Describer's.

The Objects game proceeded through 14 tasks. In the initial dur tasks, one of the
subjects always acted as the Describer, and the other one afe Follower. In the following
four tasks they inverted their roles: the subject that played the Describer role in the initial
four tasks was now the Follower, and vice versa. In the nal sk tasks, they alternated the

roles with each new task.

2.1.3 Subjects and sessions

Thirteen subjects (six female, seven male) participated inthe study, which took place in
October 2004 in the Speech Lab at Columbia University. Eleva of the subjects participated
in two sessions on di erent days, each time with a di erent partner. All subjects reported
being native speakers of Standard American English and hawig no hearing impairments.
Their ages ranged from 20 to 50 years (mean: 30.0; standard diation: 10.9), and all
subjects lived in the New York City area at the time of the study. They were contacted
through the classi ed advertisements websitecraigslist.org . Table 2.1 shows detailed
information of the sessions participants.

We recorded twelve sessions, each containing an average dd 4#ninutes of dialogue,
totaling roughly 9 hours of dialogue in the corpus. Of those,70 minutes correspond to
the rst part of the Cards game, 207 minutes to the second partof the Cards game, and
258 minutes to the Objects game. On average, the rst part of @ach Cards game took 1.9
minutes; the second part, 5.8 minutes; and the Objects game21.5 minutes.

Additionally, before the actual games, subjects played onehort version of each game to
become familiar with the environment. The curtain was remowed during thesepreliminary
games, so there could be visual communication between the playersaand they were allowed

to ask questions to the experimenter. The total duration of the preliminary games was 110
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Session no. Speaker A Speaker B
01 101 Male 25|102 Male 25
02 103 Female 25| 104 Male 25
03 105 Female 25| 106 Male 30
04 107 Male 30| 108 Male 45
05 109 Female 50/ 101 Male 25
06 108 Male 45| 109 Female 50
07 110 Female 50| 111 Female 20
08 102 Male 25| 105 Female 25
09 113 Male 20| 112 Female 20
10 111 Female 20| 103 Female 25
11 112 Female 20| 110 Female 50
12 106 Male 30| 107 Male 30

Table 2.1: Number, gender and approximate age of the partipants of the twelve sessions.

minutes. These data were not used in any of the experiments msented in this thesis.
Each subject was recorded on a separate channel of a DAT reater, at a sample rate of

48kHz with 16-bit precision, using a Crown head-mounted clee-talking microphone. Each

session was later downsampled to 16k, 16 bits, and saved aseostereo wav le with one

player per channel, and also as two separate mono wav les, @nfor each player.

2.2 Corpus annotation

Trained annotators orthographically transcribed the recordings of the Games Corpus and
manually aligned the words to the speech signal, yielding adtal of 70,259 words and 2037
unique words in the corpus. Additionally, self repairs and @rtain non-word vocalizations
were marked, including laughs, coughs and breaths. Intonabnal patterns and other aspects
of the prosody were identi ed using the ToBI transcription f ramework (Pitrelli et al., 1994;
Beckman and Hirschberg, 1994; see Appendix A for a brief dedption). All of the Objects

portion of the corpus (260 minutes of dialogue) and roughly ae third of the Cards portion
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(60 minutes) were intonationally transcribed by trained annotators.

Part-of-speech tags were labeled automatically for the whie corpus using Ratnaparkhi
et al.'s (1996) maxent tagger trained on a subset of the Switaboard corpus (Charniak and
Johnson, 2001) in lower-case with all punctuation removedto simulate spoken language
transcripts. Each word had an associated POS tag from the fulPenn Treebank tag set
(Marcus et al., 1993), and one of the following simpli ed tags: noun, verb, adjective, adverb,

contraction or other.

We de ne an inter-pausal unit (IPU) as a maximal sequence of words surrounded
by silence longer than 50 milliseconds. Aturn is a maximal sequence of IPUs from one
speaker, such that between any two adjacent IPUs there is nomeech from the interlocu-
tor. Boundaries of IPUs and turns are computed automaticaly from the time-aligned
transcriptions. We classi ed the beginning of each turn in the Games Corpus into one of
several turn-taking categories, including smooth switch,overlap, interruption, butting-in,
backchannel, and others. These categories are de ned in Clpder 5, along with a detailed

description of the corpus annotation.

Throughout the Games Corpus, we noted that subjects made frguent use ofaffirma-
tive cue words : the 5456 instances of such words account for 7.8% of the totavords
in the corpus. The most frequent a rmative cue word in the cor pus is okay, with 2265
instances, followed byright (1258), yeah (903), mm-hm (478), alright (236), uh-huh (169),
yes (53), yep (47), gotcha (26), yup (11), and huh (10). Since the usage of these words
apparently varies signi cantly in meaning, we asked three hbelers to independently classify
all occurrences of the 11 words listed above in the entire cpus into several discourse/
pragmatic functions, including acknowledgment/agreemei, backchannel, and literal mod-

i er, among others. De nitions of these functions, as well as a detailed description of the

labeling task, are provided in Chapter 12.

Finally, trained annotators identi ed all questions in the Objects portion of the Games
Corpus, subsequently categorizing them according to theirform (e.g., yes-no question,
wh-question) and function (e.g., information request, rhetaical question). This labeling

task is described in more detail in Appendix B.5.



CHAPTER 2. CORPUS DESCRIPTION 13

2.2.1 Acoustic features

All acoustic features were extracted automatically for the whole corpus using the Praat
toolkit (Boersma and Weenink, 2001). These include pitch, ntensity, stylized pitch, ratio
of voiced frames to total frames, jitter, shimmer, and noiseto-harmonics ratio.

Pitch slopes were computed by tting least-squares linear egression models to the
data points extracted from given portions of the signal, sut as a full word or its last
200 milliseconds. This procedure is illustrated in Figure 23, which shows the pitch track
of a sample utterance (blue dots) with three linear regressins, computed over the whole
utterance (solid black line), and over the nal 300 and 200ms(‘'A' and "B' dashed lines,

respectively). We used a similar procedure to compute the slpe of intensity and stylized

Figure 2.3: Sample pitch track with three linear regressios: computed over the whole

IPU (bold line), and over the nal 300ms (A) and 200ms (B).

pitch measurements.

Stylized pitch curves were obtained using the algorithm praided in Praat: Look up the
pitch point p that is closest to the straight line L that connects its two neighboring points;
if pis further than 4 semitones away fromL, end; otherwise, removep and start over.

All features related to absolute (i.e. unnormalized) pitch values, such as maximum pitch

or nal pitch slope, are not comparable across genders becae of the di erent pitch ranges
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of female and male speakers | roughly 75-500 kHz and 50-300 kB, respectively. Therefore,
before computing those features we applied a linear transfonation to the pitch track values,
thus making the pitch range of speakers of both genders apprimately equivalent. We refer
to this process asgender normalization

All normalizations were calculated using z-scores: z = (X )=, where x is a raw
measurement to be normalized (e.g., the duration of a partialar word), and and are
the mean and standard deviation of a certain population (e.g, all instances of the same

word by the same speaker in the whole conversation).
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Chapter 3

Motivation and Research Goals

Interactions with state-of-the-art interactive voice response (IVR) systems are often de-
scribed by users as \confusing” and even \intimidating”. As speech technology continues
to improve, it is becoming clear that such negative judgmens are not due solely to errors
in the speech recognition and synthesis components. Rathecoordination problems in the
exchange of speaking turns between system and user are a plable explanation for part of
the de cient user experience (Bohus and Rudnicky, 2003; Rax et al., 2006).

For example, currently the most common method for determining when the user is will-
ing to yield the conversational oor consists in waiting for a silence longer than a prespeci ed
threshold, typically ranging from 0.5 to 1 second (Ferrer etal., 2002). However, this strategy
is rarely used by humans, who rely instead on cues from soursesuch as syntax, acoustics
and prosody to anticipate turn transitions (Yngve, 1970). If suchturn-yielding cues can
be modeled and incorporated in IVR systems, it should be poskle to make faster, more
accurate turn-taking decisions, thus leading to a more uen interaction. Additionally, a
better understanding of the mechanics of turn-taking couldbe used to vary the speech out-
put of IVR systems to (i) produce turn-yielding cues when the system is nished speaking
and the user is expected to speak next, and (ii) avoid producig such cues when the system
has more things to say.

Another source of problems for state-of-the-art IVR systens are backchannel responses
uttered by the user. Backchannels are short expressions, such ash-huh or mm-hm,

uttered by listeners to convey that they are paying attention, and to encourage the speaker to
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continue (Duncan, 1972; Ward and Tsukahara, 2000). When theauser utters a backchannel
while the system is talking, that input is typically interpr eted as a turn-taking attempt,
or barge-in , thus leading the system to stop and listen | the opposite of t he user's
intention. Therefore, knowing the characteristics of baclchannels should be a valuable tool
for distinguishing them from utterances that initiate long er contributions.

A related issue is backchannel responses uttered by the sysn. In situations in which
users are expected to enter large amounts of information, sih as lists or long descriptions,
the ability for the system to output backchannel responses Bould improve the coordination
between the two parties. To achieve this, the system needs st to be capable of detecting
acceptable points to produce backchannels, possibly folaing the speaker's production of
hypothetical backchannel-inviting cues conveying that a subsequent backchannel re-
sponse would be welcome. The system should also know the ampriate acoustic/prosodic
properties needed for backchannels to be interpreted corotly as backchannels rather than
as attempts to take the turn.

These and other issues of current IVR systems can be summagd in the following

empirical questions:

Q1. The system wants to keep the oor; how should it formulate its output to avoid an

interruption from the user?

Q2. The system wants to keep the oor, ensuring that the user § paying attention; how

should it formulate its output to give the user an opportunit y to utter a backchannel?

Q3. The system wants to yield the oor to the user; how should t formulate its output to

invite the user to take the turn?

Q4. The user has produced a short segment of speech; how canetlsystem tell whether

that was a backchannel or an attempt to take the turn?

Q5. The user is speaking; how can the system know when it is anp@ropriate moment to

take the turn?

Q6. The user is speaking; how can the system know whether andhen it should produce

a backchannel as positive feedback to the user?
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Q7. The user is speaking and the system wants to produce a bagkannel response; how

should it formulate its output for the backchannel to be interpreted correctly?

These questions guide us throughout the research on turn-tdng phenomena presented in
this thesis. Our hope is that our ndings will help improve th e naturalness and usability of
IVR systems in the short term, as well as open new research dctions for further advances
in the eld.

It is important to note that we make no strong cognitive claims about the awareness
of speakers when producing turn-taking cues, or of listener when perceiving and/or using
such cues. Rather than proposing a mental model of the interetions between conversational
partners, we aim at nding and describing associations between turn-taking phenomena
(e.g., turn changes or backchannels) and objective, measable events (e.g., variations in
features such as pitch or intensity), hoping that such assoiations will eventually be useful

in speech processing applications.
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Chapter 4

Previous Research on Turn-Taking

In in uential work, Sacks et al. (1974) present a characterization of turn-taking in conver-

sations between two or more persons. After providing a detdéd description of fourteen
\grossly apparent facts” about human conversation, such as\speaker change recurs” or
\one party talks at a time", they enunciate a basic set of rules governing turn construction:

At every transition-relevance place (TRP),

(a) if the current speaker (CS) selects a conversational pdner as the next speaker, then

such partner must speak next;
(b) if CS does not select the next speaker, then anyone may takthe next turn;
(c) if no one else takes the next turn, then CS may take the nexturn.

The authors do not provide a formal de nition of TRPs, but con jecture that these tend to
occur at syntactic \possible completion points", with into nation playing a decisive role.

The question of what types of cues humans exploit for engagim in synchronized con-
versation has been addressed repeatedly over the past deesd Yngve (1970) shows that
pausing in itself is not a turn-yielding signal, in clear opposition to the strategy used in
most of today's IVR systems.

In a series of analyses of face-to-face conversations in &tdard American English (SAE),
Duncan (1972; 1973; 1974; 1975; Duncan and Fiske, 1977) cenfures that speakers display

complex signals at turn endings, composed of at least one ofxsdiscrete behavioral cues:
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(1) any phrase- nal intonation other than a sustained, inte rmediate pitch level; (2) a drawl
on the nal syllable of a terminal clause; (3) the termination of any hand gesticulation; (4)
a stereotyped expression likeyou know; (5) a drop in pitch and/or loudness in conjunc-
tion with such a stereotyped expression; (6) the completionof a grammatical clause. The
central nding of these studies is that the likelihood of a turn-taking attempt by a listener
increases linearly with the number of turn-yielding cues cajointly displayed. Duncan's
work has been criticized for two reasons (Beattie, 1981; Cuer and Pearson, 1986). First,
it lacks a formal description of the cues under observation.No metric, speci c procedure
or inter-labeler reliability measure is provided, suggesing that the author merely recorded
his subjective impressions. Second, the robustness of it¢asistical analysis is at least ques-
tionable. Duncan reports a correlation of 0.96 p < 0:01) between number of turn-yielding
cues displayed and percentage of auditor turn-taking attenpts, but this computation is
based on a reduced sample size. For example, as little as ninestances of the simultaneous
display of ve cues are reported, and therefore a small uctuation in the data may change
the results substantially. Nonetheless, Duncan is the rstto posit the existence of complex
turn-yielding signals formed by individual cues such that, the more complex the signal, the
higher the likelihood of a speaker change. This crucial ndng has laid the groundwork for

a number of subsequent studies of turn-taking that con rm many of Duncan's claims.

In one such study, Ford and Thompson (1996) seek to formalizéwo of Duncan's in-
dividual cues, grammatical completion and intonation, and study their correlation with
speaker changes in two naturally occurring conversationsni SAE. For grammatical comple-
tion, Ford and Thompson de ne syntactic completion points as those points at which
an utterance could possibly be interpreted as syntacticalf complete \so far" in the discourse
context, independent of intonation or pause (see Figure 4.for a few examples). For intona-
tion, they consider a binary distinction between nal (either rising or falling) or non- nal
(all other). They nd that syntactic completion points oper ate together with a rising or
falling nal intonation as an important turn-yielding cue. Also, they show that while almost

all (98.8%) intonationally complete utterances are also swptactically complete, only half

! Ford and Thompson (1996) use a perceptual de nition of inton ational unit by Du Bois et al. (1993):

\a stretch of speech uttered under a single coherent intonation contour"; and rely on acoustic, prosodic and



CHAPTER 4. PREVIOUS RESEARCH ON TURN-TAKING 23

V: and his knee was being worn/ okay/ wait/ it was bent/ that way/

D: | mean it's it's not like wine/ it doesn't taste like wine/ but it's
W: fermented/
D: white/ and milky/ but it's fermented/

Figure 4.1: Examples of syntactic completion points, indiated by slashes.

Taken from Ford and Thompson (1996) [p. 144].

(53.6%) of syntactically complete utterances are intonatonally complete, thus highlighting

the prominent role played by intonation in marking discourse and dialogue structure.

Wennerstrom and Siegel (2003) enrich Ford and Thompson's &hnique with a more
precise de nition of nal intonation based on the system dewveloped by Pierrehumbert (1980),
a predecessor of ToBl. They use six phrase- nal intonation&categories: high rise (H-H% in
the ToBI system), low (L-L%), plateau (H-L%), low rise (L-H%), partial fall (also L-L%),?
and no boundary. They nd high rise intonation to be a strong cue of turn nality, with 67%
of its occurrences coinciding with turn shifts, followed by low, with 40%. The remaining
four intonational categories strongly correlate with turn holds. Additionally, Wennerstrom
and Siegel analyze the interaction between intonation and Brd and Thompson's syntactic
completion, and report similar ndings in line with the hypo thesized existence of complex
turn-yielding signals.

A potential problem of observational studies such as the ong presented above is that
they only collect indirect evidence of turn-yielding cues,arising from the fact that conver-
sational decisions areoptional . A listener who intends to let the speaker continue to hold
the oor may choose not to act on turn-yielding cues displayal by the speaker. Further-

more, when using corpora of spontaneous conversations, it iextremely di cult to obtain

timing cues to manually identify unit boundaries, independ ently of syntax.
2 The partial fall category is described as a \downward sloping pitch contour t hat subsided before reaching
the bottom of the speaker's range" [p. 84], and corresponds to a special type of L-L% in the ToBI system

called “suspended fall' (Pierrehumbert, 1980).
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a balanced set of utterances controlling for the diverse fdares under study; e.g., utterance
pairs from the same speaker, with the same syntactic and seméic meaning, but one half
in turn-medial position and the other half in turn- nal posi tion. To address these issues,
there have been several production and perception experinmes aimed at replicating in the
laboratory the turn-taking decisions made by speakers. In aypical production study, par-
ticipants read or enact fabricated dialogues with controlled target utterances; in a typical
perception study, subjects classify a set of utterances imt turn-medial or turn- nal ac-
cording to the believed speaker's intentions. These settigs give the experimenter a great

amount of control over the experimental conditions.

For instance, Scha er (1983) presents a perception study tocompare non-visual turn-
taking cues in face-to-face and non-face-to-face conveisans in SAE. She nds no signi cant
di erences, but reports that syntactic and lexical information appears to be more useful to
listeners in judging turn boundaries than prosodic information in both conditions. Also, lis-
teners show a great amount of variability in their perception of intonation as a turn-yielding
cue. In a production and perception study of turn-taking in British English, Cutler and
Pearson (1986) obtain the same results: a wide listener vaability in perception of intona-
tion as a turn-yielding cue. They also nd a slight tendency to characterize a \downstep in
pitch” towards the phrase end as a turn-yielding cue, and an \upstep in pitch" as a turn-
holding cue (that is, a cue that typically prevents turn-taking attempt s from the listener),
seemingly con icting with Duncan's hypothesis. The subsegent ndings by Wennerstrom
and Siegel (2003) described above, relatingigh rises to turn shifts and low rises to turn

holds, seem to provide a plausible explanation for this appeent contradiction.

In two perception experiments designed to study intonation and syntactic completion
in British English turn-taking, Wichmann and Caspers (2001) nd only mild support for
Duncan's claim that both syntactic completion and anything but a high level tone work
as turn-yielding cues. It is important to note, however, that it is reasonable to expect
di erent dialects and cultures to have di erent turn-takin g behaviors. Therefore, ndings
even for languages within the same group, like British vs. Anerican English, could di er

substantially.
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As mentioned in the previous chapter, a related topic is backhannel-inviting cues | that
is, events in the current speaker's speech that invite the ktener to produce a backchannel
response. This research topic has received less attentiorhdn turn-yielding cues. Ward
and Tsukahara (2000) describe a region of low pitch lasting faleast 110 milliseconds as
a backchannel-inviting cue. They show that, in a corpus of spntaneous non-face-to-face
dyadic conversations in SAE, 48% of backchannels follow aVe-pitch region, while only 18%
of such regions precede a backchannel response.

Shifting our attention to implementation issues, several nore recent studies investigate
ways of improving the turn-taking decisions made by IVR sysems, by incorporating some
of the features shown in previous studies to correlate with tirn or utterance endings. Ferrer
et al. (2002; 2003) present an approach for online detectionf utterance boundaries (de ned
similarly to transition-relevance places), combining dedsion trees trained with prosodic fea-
tures (related mainly to pitch level, pitch slope and phone durations) and n-gram language
models. Edlund et al. (2005) experiment with a hand-craftedrule for detecting utterance
boundaries: If a long-enough pause follows a long-enough egch segment that does not end
in a level pitch slope, then mark the pause as an utterance endSchlangen (2006), Atterer
et al. (2008) and Baumann (2008) conduct a series of experimés using machine learning
classi ers trained on prosodic and acoustic features to defct utterance boundaries. Raux
and Eskenazi (2008) present an algorithm to dynamically sethe threshold used for deter-
mining that a silence follows a turn boundary, based on a numler of features extracted from
the immediately preceding user turn. The models presentedn these studies share that all
of them improve over the silence-based techniques for precling points where the speaker
has nished the current utterance, a knowledge that should dso improve the performance
and naturalness of IVR systems (Ward et al., 2005; Raux et al.2006). The positive results

obtained by these studies encourage further research on theld.
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Chapter 5

Turn-Taking in the Games Corpus

The Games Corpus (see Part 1) o ers an excellent opportunity to study the turn-taking
management mechanisms occurring in spontaneous conversa, and to provide answers to
the research questions posited in Chapter 3. A super cial aalysis of the corpus reveals it
to be rich in all kinds of turn-taking phenomena, as all subjects became engaged in active
conversation to achieve the highest possible performancenithe various game tasks, all
designed to be interesting and challenging.

All conversations in the corpus are between two people collzorating to perform a com-
mon task, and take place with no visual contact between the péticipants. These conditions
roughly replicate the typical settings of current telephone IVR systems, in which a person is
assisted by a remote computer using natural speech over theelephone to perform relatively
simple tasks, such as making travel reservations or requesig banking information.

Conversations involving not just two, but three or more participants are very frequent
in every day life, and a better understanding of their turn-taking mechanisms will be useful
in speech processing tasks such as, for example, automaticegting summarization. Even
though previous studies of turn-taking (e.g. Sacks et al., 974) do not restrict the number
of conversation participants, the question of whether the ules governing turn-taking in
dialogue also apply to multi-party exchanges is yet to be addessed. Therefore, there is
currently no reason to assume that the results presented inhis thesis generalize (or, do not
generalize) beyond dyadic conversations. Further reseancwill indeed be needed to answer

this empirical question.
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When visual contact is permitted between the conversation @rticipants, a whole new
dimension of complexity is introduced to the analysis of tum-taking phenomena. For in-
stance, eye gaze and hand gesticulation are known to be strgnturn-taking cues (Kendon,
1972; Duncan, 1972; McNeill, 1992). When collecting the Gams Corpus, visual contact
was impeded by hanging a curtain between the two participans, thus forcing all communi-
cational to be verbal. The lack of visual contact allows us toe ectively isolate audio-only

cues, the central object of study in our experiments.

Finally, we take several steps to achieve results as generak possible | i.e., not true
only for a speci ¢ set of speakers, but generalizable to a layer population. First, the corpus
contains twelve conversations recorded from thirteen di e@ent people, as opposed to smaller
numbers used in previous studies, typically limited to two a three conversations. Second,
the participants of each conversation had never met each oter before the recording session.
This allows us to avoid any potential communicational codesor behaviors arising from pre-
existing acquaintances between the subjects, and that arelso beyond the scope of our
study. Third, in the statistical studies presented in the following chapters, we pay great
attention to speaker variation. Speci cally, for each resut holding for all thirteen speakers

together, we check and report whether the same results holdr each individual speaker.

5.1 Labeling scheme

As discussed in Chapter 3, our main research goal is to inveigiate the existence of acoustic,
prosodic, lexical and syntactic turn-yielding and backchaanel-inviting cues. That is, we
search for events in the speech produced by the person holdjrthe conversational oor that
may cue the listener about an imminent turn boundary, or that may invite the listener to
utter a backchannel response. With this goal in mind, we needrst to de ne and identify
various types of turn-taking phenomena in the corpus, whichwe later analyze separately.
For example, in our search for turn-yielding cues, we need tade ne and identify turn
boundaries, to later compare turn- nal utterances against turn-medial ones. In this section
we consider a number of labeling systems adopted by previousorks, and describe in detail

the one we choose for our experiments.
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In an approach adopted by a number of studies, all exchangesra collapsed into a single
change category, de ned as a transition from a turn by the participa nt currently holding
the oor to a new turn by the other participant (see Figure 5.1).1 Some studies further
subdivide this category into change with overlap and change without overlap ,
depending on whether the two contributions have a non-emptytemporal intersection. The
second main class in this approach is théwold category, de ned as a transition between
two adjacent IPUs within a turn by the same speaker. The chang@ and hold categories
are typically contrasted to look for turn-yielding cues, with the assumption that instances

of the former are more likely to contain such cues than instases of the latter. The main

Figure 5.1: Simple 3-way de nition of turn exchanges. Blacksegments represent speech;

white segments, silence. (i) Hold, (ii) Change without ovefap, (iii) Change with overlap.

advantage of these simple binary and ternary distinctions § that they can be computed

automatically from the speech signal: turn boundaries can le estimated using an energy-
based silence detector, provided that each speaker has beegcorded on a separate channel.
In our case, this labeling system oversimpli es the problem since we need to be able to
di erentiate phenomena such as backchannels and interrupgbns from regular turn changes.

In other words, we need a ner grained categorization of speeer changes.

One such categorization is introduced by Ferguson (1977) foa study of behavioral psy-
chology that investigates simultaneous speech and interrptions as measures of dominance
in family interaction. Beattie (1982) adopts the same systen in a study of two political in-
terviews comparing the turn-taking styles of former British Prime Ministers Jim Callaghan

and Margaret Thatcher, and proposes the decision tree showm Figure 5.2 as a systematic

! Recall from Chapter 2 that we dene a turn as a maximal sequence of IPUs from one speaker, such
that between any two adjacent IPUs there is no speech from the interlocutor. An inter-pausal unit (IPU)

is de ned as a maximal sequence of words surrounded by silene longer than 50 ms.
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procedure for the manual annotation of turn exchange types. Beattie reports an almost

Attempted speaker switch
2

Successful)
yes Hy Ho
. H
Simultaneous speech present? Simultaneous speech present?
yes Hy 1o yes Hpy no
_ H H
First speaker's First speaker's Butting-in -
utterance complete’®® utterance complete®  interruption ’
yes Hpy o yes Hpy 1o
_H H
Overlap Simple Smooth Silent
interruption switch interruption

(1) By successful it is meant that \the initiator of the attem pted speaker switch
gains the oor".
(2) Completeness is \judged intuitively, taking into account the intonation, syn-

tax and meaning of the utterance".

Figure 5.2: Turn-taking labeling scheme proposed by Beat& (1981).

perfect inter-labeler agreement using this labeling schem with a Cohen's score (Co-
hen, 1960) of 0.89. This system is better suited for our expéments on turn-yielding cues
than the ones using binary and ternary distinctions. It distinguishes two exchange types
(smooth switches and overlaps ) in which turn-yielding cues are likely to be present,
given that a turn exchange occurs and the rst speaker (i.e.,the one originally holding
the oor) manages to nish the utterance. The remaining thre e types (simple, silent
and butting-in interruptions ) are less likely to contain turn-yielding cues, given that
the rst speaker is interrupted and does not manage to nish the utterance. Additionally,
the di erence between smooth switches and overlaps is that@me simultaneous speech is
present in the latter. In such cases, the listener e ectivey anticipates the end of a turn
and starts speaking right before the interlocutor nishes, but without actually causing an
interruption in the conversational ow. These cases are ushul for looking for turn-yielding

cues that may occur before the nal part of the turn, and that may aid the listener in
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projecting the turn boundary.

We adopt a slightly modi ed version of Beattie's labeling scheme, depicted in Figure 5.3.
The left half of the decision tree is equivalent to Beattie's scheme, but rearranged in a dif-
ferent order. The decision \Simultaneous speech present?is placed higher up in the tree,
as it is pre-computed automatically based on the manual ortlographic transcripts of the

conversations. Backchannels play an important role in our esearch goals, but Beattie explic-

For each turn by speaker S2, where S1 is the other speaker, éhl52's turn as follows:

S2 intends to
take the oor?®

H
yes H ,no
'QH
Simultaneous speech present? Simultaneous speech present?
H H
yes H ,no yes H ,no
'QH 'QH
S2 is successful? S1's utterance Backchannel Backchannel
yes Hpy no complete?? with overlap (BC)
H yes Hy {0 (BC _0O)
S1's utterance Butting-in H _
complete??) (BI) Smooth Pause interruption
yes H ﬂo switch (S) (P|)
H
Overlap Interruption
(O) 0

Figure 5.3: Turn-taking labeling scheme.

itly excludes them from his study. Therefore, we incorporat backchannels in the labeling
scheme by adding the decision marked (1) at the root of the ddsion tree. Since backchan-
nels were identi ed by annotators of the function of a rmati ve cue words (as described in
detail in Chapter 12, on page 107), we use these labels, and aotators of turn-taking are
not asked to make this decision. For the decision marked (2)r Figure 5.3, we use Beattie's
informal de nition of utterance completeness: \Completeness [is] judged intuitively, taking
into account the intonation, syntax, and meaning of the utterance” [p. 100]. Additionally,
we identify three cases that do not correspond to actual turnexchanges, and thus receive

special labels:

Task beginnings: Turns beginning a new game task are labeleX1 .
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Continuation after a backchannel: If a turn t is a continuation after a BC or
BC _O from the other speaker, it is labeledX2 _O if t overlaps the backchannel, or

X2 if not.

Simultaneous start:  Fry (1975) reports that humans require at least 210 millisee
onds to react verbally to a verbal stimulus. Thus, if two turn s begin within 210 ms of
each other, they are most probably connected to preceding @nts than to one another.
In Figure 5.4, A1, A, and B represent turns from speakersA and B. Most likely,

A, is simply a continuation from A1, and B, occurs in response tcA;. Thus, B is

labeled with respect to A1 (not Ay), and A; is labeled X3 .

Al x As

y Bi ' 0<jy Xj< 210ms

Figure 5.4: Simultaneous start.

Finally, all continuations from one IPU to the next within th e same turn are labeled auto-
matically with the special label H, for “hold'.

Needless to say, the categories de ned in this taxonomy areao broad to accommodate
the wide spectrum of variation in human conversation. Howeer, they are well suited for our
turn-taking experiments, as they allow us to look for turn-yielding cues by contrasting the
places where such cues are likely to occur (e.g. before smbawitches) against the places
where they are not likely to occur (e.g. before holds or interuptions). Furthermore, more
ne-grained distinctions, albeit closer to representing the full diversity of turn-taking events
present in spontaneous dialogue, would have the cost of dataparsity, thus compromising
the statistical signi cance of the results.

Two trained annotators labeled the whole Objects portion ofthe corpus separately? with

a Cohen's score (Cohen, 1960) of 0.913 corresponding to “almost pecteagreement3

2 The complete guidelines used by the annotators are presentel in Appendix D.

% The measure of agreement above chance is interpreted as follows0 = None, 0-0.2 = Small, 0.2-0.4
= Fair, 0.4-0.6 = Moderate, 0.6-0.8 = Substantial, 0.8-1 = Al most perfect.

4 Note that this score does not include the identi cation of backchannels, performed by di erent

annotators as described in Chapter 12.
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Subsequently, we performed the following steps to correct gtential labeling errors. The
cases with dissimilar judgments were marked for revision ath given back to one of the
annotators (ANN1 ), without specifying the labels assigned by the other annoator (ANN2).
ANNZ1 corrected what he considered were errors in his labels, andhé process was repeated
for ANN2, who revised the remaining di erences, again blind toANN1's choices. At the

end of this process, the score improved to 0.9895. Given the high inter-labeler agrement

Label | Count | Percentage
BC 553 6.8%
BC_O 202 2.5%
Bl 104 1.3%
I 158 1.9%
@] 1067 13.1%
Pl 275 3.4%
S 3247 39.9%
X1 1393 17.1%
X2 449 5.5%
X2_0 59 0.7%
X3 590 7.3%
? 37 0.5%
Total 8134 100.0%

Table 5.1: Distribution of turn-taking labels in the Games Corpus.

obtained in the Objects portion of the corpus, the Cards porion was labeled by just one
trained annotator. Table 5.1 shows the distribution of turn -taking labels in the entire corpus.
Additionally, there are 8123 instances of "hold' transitions (H) in the Games Corpus, as

de ned above.
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Chapter 6

Turn-Yielding Cues

We begin our study of turn-taking in the Columbia Games Corpus by investigating turn-
yielding cues | events from acoustic, prosodic or syntactic sources, inter alia, produced
by the speaker when approaching the potential end of a conveational turn, that may be
used by the listener to detect, or even anticipate, an opportinity to take the oor. We
adopt the assumption proposed by Duncan (1972) that individually identi able cues may
be combined together to form a complex turn-yielding signal As discussed in the previous
sections, a number of non-visual turn-yielding cues have ten hypothesized in the literature:
any nal intonation other than a sustained pitch level; a drawl on the nal syllable of a
terminal clause; a drop in intensity and pitch levels; steretyped expressions such agou
know or | think ; and the completion of a grammatical clause. In this chapterwe examine
each of these individual cues in the Games Corpus. We also ment results introducing
two turn-yielding cues rarely mentioned in the literature, related to voice quality (Ogden,
2002) and IPU duration (Cutler and Pearson, 1986). After corsidering individual cues, we
describe how they are combined together to form a complex siwl, and show the manner
in which the likelihood of a turn switch increases with the number of cues present in such
a signal.

Our general approach consists in contrasting IPUs immediagly preceding smooth switch-
es (S) with those immediately preceding holds H). We hypothesize that turn-yielding cues
are more likely to occur beforeS than beforeH . It is important to emphasize the optionality

of all turn-taking phenomena and decisions: ForH, turn-yielding cues | whatever their
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nature | may still be present; and for S, they may be sometimes absent. However, we
hypothesize that their likelihood of occurrence should be rach higher beforeS.

Finally, as mentioned above, we make no claims regarding whieer speakers intend to
produce turn-yielding cues, or whether listeners conscicsly perceive and/or use them to
aid their turn-taking decisions. Instead, we nd and describe associations between turn
exchanges and a number of objective, measurable events | sut as variations in pitch or
intensity, or lexical and syntactic patterns, which may eventually be useful in modeling

human-like behavior in IVR systems and other speech procesyy applications.

6.1 Individual turn-yielding cues

6.1.1 Intonation

IPU- nal intonation is the turn-yielding cue most frequent ly mentioned in the literature
(Duncan, 1972; Cutler and Pearson, 1986; Ford and Thompson1996; Wennerstrom and
Siegel, 2003; inter alia). Anything other than a plateau (i.e., a sustained pitch level, neither
rising nor falling; a H- phrase accent followed by a L% boundeay tone according to the ToBI
system: H-L%) has been characterized as a turn-yielding cudn this section, we investigate
the existence of this cue in the Games Corpus using manual psodic annotations, as well
as automatic computations of the IPU- nal pitch slope.

First, we analyze the categorical prosodic labels in the pdion of the corpus annotated
using the ToBI conventions. We tabulate the phrase accent ad boundary tone labels
assigned to the end of each IPU, and compare their distributbn for the S and H turn
exchange types, as shown in Table 6.1. A chi-square test reps a signi cant departure
from a random distribution ( 2 = 11025, d:if: =5, p  0). Only 13.2% of all IPUs
immediately preceding a smooth switch §) | where turn-yielding cues are most likely
present | end in a plateau (H-L%); the majority of the remaini ng ones end in either a
falling pitch (L-L%) or a high rise (H-H%). For IPUs preceding a Hold (H) the counts
approximate a uniform distribution, with the plateau conto urs ([/]H-L%) being the most
common. In other words, a smooth switch rarely follows a platau contour, while in seven

out of ten cases it follows either a high-rising or a falling ontour. On the other hand, the
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S H
H-H% | 484 (22.1%) 513  (9.1%)
[[H-L% | 289 (13.2%)| 1680 (29.9%)
L-H% | 309 (14.1%)| 646 (11.5%)
L-L% | 1032 (47.2%) | 1387  (24.7%)
no boundary tone 16 (0.7%) | 1261 (22.4%)
other 56  (2.6%)| 136  (2.4%)
total | 2186  (100%)| 5623  (100%)

Table 6.1: ToBI phrase accent and boundary tone for IPUs preeding S and H.

high counts for the falling contour preceding a hold (24.7%)may be explained by the fact
that, as discussed above, taking the turn is optional for thelistener, who may choose not
to act upon hearing some turn-yielding cues. Still, plateauis the contour with the highest
count before holds, supporting Duncan's (1972) hypothesishat it works as a turn-holding
cue. It is not entirely clear, though, what the role of the low-rising contour (L-H%) is, as it
occurs in similar proportions in both cases. Finally, we not that the absence of a boundary
tone works as a strong indication that the speaker has not nshed speaking, since nearly

all (98%) IPUs without a boundary tone precede a hold.

As an objective acoustic approximation of this perceptual ature, we use the slope of
linear regression models tted to the pitch track, both raw and stylized, computed over
the nal 200 and 300 milliseconds of each IPU (see Section 2.@n page 11 for a detailed
explanation). This gives us four acoustic approximations 6 the IPU- nal intonation. The
case of a plateau contour, or a sustained pitch, would corrggnd to a value of Ry slope in
the vicinity of zero; the second case, either a rising or a féihg pitch, would correspond to
a high positive or a high negative value of i slope. Therefore, we use thabsolute value

of the Fq slope calculations to di erentiate these two cases.

Figure 6.1 shows the absolute value of the speaker-normatd Fy slopel both raw and

L All normalizations by speaker were calculated using z-scores:z = (X  mean)=stdev, where mean and

standard deviation were computed for a given speaker over the full conversation.
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stylized, computed over the nal 200 and 300 milliseconds ofPUs immediately preceding

smooth switches §) or holds (H). Anova tests reveal the nal slope for S to be signi cantly

09

08 *

06 —

05 — as

04 — ar

03 —

01 —

200ns 300mns 200ns 300ms

Pitchslope Stylized pitch slope

Figure 6.1: Absolute value of speaker-normalized § slope, both raw and stylized,
computed over the IPU's nal 200 and 300 ms. Signi cant di er ences at thep < 0:01 level

are marked with an asterisk (" ").

higher (at p < 0:01) than for H in all cases. This indicates that IPUs preceding a hold tend
to be produced with a atter nal intonation, while IPUs prec eding a smooth switch tend
to be produced with either a rising or falling intonation. Th ese ndings provide additional
support to the hypothesis that falling and high-rising nal intonations tend to be associated

with turn endings.

Speaker variation: For each individual speaker, we compare the absolute valuefdhe
Fo slope over the nal 300 ms of IPUs precedingS and H turn exchange types. For 12 out
of the 13 speakers, this variable is signi cantly higher forS than for H (p < 0:05); for the
remaining speaker (id 110), the same relation approachesgii cance at p = 0:056. This

suggests that the ndings reported above are valid across idividual speakers. The results
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for each individual speaker are detailed in Appendix E.1.

Summary of ndings: The results presented in this section support the hypothes that
plateau nal intonation is most likely to be produced when th e speaker plans to continue
talking. On the other hand, smooth switches are more likely b occur following IPUs with
falling or high-rising intonation. The meaning of low-rising intonation is not clear, though,
as it appears to be related to switches and holds in similar poportions. Additionally, we

nd the lack of a boundary tone to be strongly related to turn h olds.

6.1.2 Speaking rate

Duncan (1972) hypothesizes a \drawl on the nal syllable or an the stressed syllable of
a terminal clause” [p. 287] as a turn-yielding cue. Such a dnal would probably lead to
a noticeable decrease in the speaking rate. However, prelimary exploratory analyses we
have run on our corpus suggest anncrease in speaking rate just before turn changes. In
the following paragraphs we try to shed some light on this apprent contradiction.

We begin our analysis using two common de nitions of speakig rate: syllables per
second, and phonemes per second. Both syllable and phonemauats were estimated using
dictionaries, and word durations were extracted from the maual orthographic alignments.
Figure 6.2 shows the speaker-normalized speaking rate, cqmted over the whole IPU and
over its nal word, for IPUs preceding smooth switches (S) or holds (H). The rst thing that
becomes clear from these results is that both measures of sgieng rate, computed either
over the whole IPU or over its nal word, are signi cantly fas ter before S than before H
(anova tests, p < 0:01), thus indicating an increased speaking rate before turboundaries.

Furthermore, the speaking rate is in both cases (beforé&s and beforeH) signi cantly
slower on the nal word than over the nal IPU. This nding is i n line with phonological
theories that predict a segmental lengthening near prosodi phrase boundaries (Beckman
and Edwards, 1990; Wightman et al., 1992; inter alia), and m& account for the drawl or
lengthening described by Duncan before turn boundaries. Hwmever, it seems to be the case
| at least for our corpus | that the nal lengthening tends to o ccur at all phrase nal

positions, not just at turn endings. In fact, our results indicate that the nal lengthening is
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Figure 6.2: Speaker-normalized number of syllables and pm@mes per second, computed

over the whole IPU and over its nal word.

more prominent in turn-medial IPUs than in turn- nal ones, i n contradiction to Duncan's

hypothesis.

To investigate this issue in more detail, we look next at the nost frequent IPU- nal
bigrams and trigrams preceding either a smooth switch §) or a hold (H) | that is, instances
of IPUs that share the nal two or three lexical items. For example, 29 IPUs precedingS,
and 52 precedingH, end in the nal trigram the bottom left For each bigram and trigram
with high enough counts to perform a statistical comparison we compare the duration
of each word across turn-taking types usinganova tests. This way, we can compare the
speaking rate while controlling for lexical variation. The results are summarized in Table 6.2.
The table on the left shows the most frequent IPU- nal bigrams (e.g.,hand corner, the iron);
the table on the right, the trigrams (e.g., the bottom left the bottom right). For each bigram
and trigram, these tables show the speaker-normalized dut&on of each word precedingS
and H, along with the relation holding between the mean of the two goups (‘less than'

or “greater than') and the p-value of the correspondinganova test. Signicant results
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word S H p

the | -0.563| < | -0.497| 0.376
bottom | -0.443 | < 0.001 | 0.004
left | 0.244| < | 0.494| 0.099

word S H p
hand | -0.055| > | -0.252| 0.379
corner | -0.246 | < 0.358| 0.001

the | -0.591 | < | -0.453| 0.035
bottom | -0.411| < | -0.208 | 0.165
right | -0.135| < | 0.528]| 0.013

the | -0.110| < | -0.075| 0.773
iron | -0.021| < 0.382 | 0.069

the | -0.482| < | -0.308| 0.132
lower | 0.014| < | 0.810]| 0.005
right | 0.386| < | 0.464| 0.768

the | -0.124 | < | 0.122]| 0.080
onion | -0.399 | < | 0.728]| 0.000

the | -0.372| < | -0.358| 0.922
ruler | 0.069| < | 0.357| 0.194

the | -0.405| > | -0.611| 0.007
lower | -0.467 | < | -0.330| 0.183
left | 0.420| < | 0.841| 0.004

crescent | -0.283| < | -0.275| 0.977
moon | -0.064 | < 0.129| 0.556

on | -0.382| > | -0.582| 0.328
the | -0.495| > | -0.523| 0.785
right | 0.252| < | 0.515| 0.435

Table 6.2: Speaker-normalized word duration for IPU- nal bigrams (e.g., hand corner, the
iron) and trigrams (e.g., the bottom left the bottom right). Signi cant p-values are
highlighted.

are highlighted in bold font.2 In all cases with a signi cant di erence between the two
groups, the duration of the word precedingS is shorter than that of the word precedingH .
Additionally, we observe that, before holds, almost all cortent words have longer duration
than the speaker mean (i.e., with az-score greater than zero), probably due to the nal
lengthening mentioned above. However, this e ect is attenated before smooth switches,
and even disappears in some cases. These ndings provide ther support to the hypotheses
enunciated above, that (a) IPU- nal words tend to be lengthened, but (b) such lengthening

decreases when the IPU is in turn- nal position, followed by a smooth switch.

2 In this case we usep < 0:1, given the low counts in the groups being compared.
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Speaker variation: All 13 speakers in the corpus show a signi cantly faster speling rate
| measured both as syllables per second and as phonemes per send | before smooth
switches (S) than before holds H), mirroring the results obtained when considering all sub-
jects together. Furthermore, 10 speakers also tend to prodee IPU- nal words signi cantly
faster before holds than before smooth switches, whereasairemaining three subjects show
no signi cant di erence. This indicates that our general results for speaking rate also seem
to hold for individual subjects. Detailed results for each ndividual speaker are shown in

Appendix E.1.

Summary of ndings: We nd that speakers tend to decrease their speaking rate to-
ward the end of IPUs, in correspondence with a nal lengthenng predicted by theories
of phonology. In our data, such lengthening appears to be ma pronounced before holds
than before smooth switches. Therefore, when comparing thepeaking rate before each
of these two turn-taking categories, we nd that speakers tand to speak faster before turn
switches. In other words, our results suggest that a reducetengthening of IPU- nal words

may function as a turn-yielding cue.

One plausible explanation for this contradiction of Duncan's hypothesis is the di erences
in genre and in experimental setup. In Duncan's materials, loth conversations are face-to-
face, the rst between a therapist and a psychotherapy applcant, the second between two
therapists discussing another intake interview; the GamesCorpus contains non-face-to-face
task-oriented collaborative conversations. Duncan's dibogues do not involve performing
tasks like the computer games in the Games Corpus, and they daot necessarily require
collaboration between the participants. Additionally, al though prior studies do not report
substantial di erences between face-to-face and non-faeto-face conversations, it is certainly
not inconceivable that participants could modify their usage pattern of particular turn-
yielding cues depending on the availability of visual contat. In any case, further research

is needed to address these questions.
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6.1.3 Intensity and pitch levels

A third hypothesized turn-yielding cue consists in a drop inintensity and pitch levels towards
the end of the turn, in conjunction with a stereotyped expression such asyou know In this
section, we study such a drop as a more general turn-yieldingue, independently of the
lexical items at the end of the target IPU.

We analyze intensity and pitch, measured over all of each IP|Jand over its nal 500
and 1000 milliseconds. This way, we can study how these two aastic features vary both
across and within IPUs. Subsequently, we compare the mean @e of each variable across

smooth switches §) and holds (H) as summarized in Figure 6.3.
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Figure 6.3: Speaker-normalized mean intensity and pitch, emputed over the whole IPU

and over its nal 500 and 1000 ms.

For intensity, IPUs followed by S have a mean intensity signi cantly lower than those
followed by H (anova , p < 0:01). Also, the di erences increase when moving towards the
end of the IPU. This suggests that speakers tend to lower theivoices towards potential
turn boundaries, whereas they reach turn-internal pauses Wh a higher intensity. Thus,

intensity level may aid listeners in detecting, or even antcipating, turn endings.
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Phonological theories conjecture a declination in the pitt level, which tends to decrease
gradually within utterances, and across utterances withinthe same discourse segment, as
a consequence of a gradual compression of the pitch range @rehumbert and Hirschberg,
1990). For conversational turns, then, we would expect to nd that speakers tend to lower
their pitch level as they reach potential turn boundaries. This hypothesis is veri ed by
the dialogues in the Games Corpus, where we nd that for pitch IPUs preceding S have a
signi cantly lower mean pitch than those preceding H (anova , p < 0:01). In consequence,

pitch level may also work as a turn-yielding cue.

Speaker variation: We look for individual speaker di erences in mean intensity and
mean pitch, computed over the nal 500 milliseconds of IPUs pecedingS and H. All but
one speaker (id 101) show the same marked di erence in inteity as reported above. For
pitch, such di erence exists only for seven speakers; for th other six we nd no signi cant
di erences. Therefore, while a drop in intensity before tum boundaries is consistent across
speakers, the evidence of a drop in the pitch level is less stng, although we nd no evidence

against such cue. Detailed results for each individual spder are shown in Appendix E.1.

Summary of ndings: In the Games Corpus dialogues, participants tend to produce
turn endings with lower intensity and pitch levels than those showed before turn-internal
pauses. While previous studies present a drop in intensity ad pitch levels as a turn-yielding

cue when displayed in conjunction with a stereotyped expresion, we show that such a drop

can actually function as a more general turn-yielding cue, mdependently of the lexical items.

6.1.4 Lexical cues

Stereotyped expressions such asr something you know or | think | sometimes referred
to as sociocentric sequences | have been portrayed in the literature as lexical turn-
yielding cues. We look next for uses of such expressions in¢éhGames Corpus, along with
their relation to turn-taking phenomena.

Table 6.3 lists the 25 most frequent IPU- nal bigrams precedng smooth switches §) and
holds (H). Note that some of the entries in this table are actually unigrams, since they do

not have any preceding words in the turn | i.e., they correspo nd to turn-initial single-word
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S Count | Perc. H Count | Perc.

1| okay 241 | 7.4% || okay 402 | 4.9%

2 || yeah 167 | 5.1% || on top 172 | 2.1%

3 || lower right 85| 2.6% || um 136 | 1.7%

4 || bottom right 74 | 2.3% || the top 117 | 1.4%

5 || the right 59 | 1.8% || of the 67 | 0.8%

6 || hand corner 52 | 1.6% || blue lion 57| 0.7%

7 || lower left 43 | 1.3% || bottom left 56 | 0.7%

8 || the iron 37| 1.1% || with the 54| 0.7%

9 || the onion 33| 1.0% || the um 54| 0.7%

10 || bottom left 31| 1.0% || yeah 53| 0.7%
11 || the ruler 30| 0.9% || the left 48 | 0.6%
12 || mm-hm 30| 0.9% || and 48 | 0.6%
13 || right 28 | 0.9% || lower left 46 | 0.6%
14 || right corner 27 | 0.8% || uh 45| 0.6%
15 || the bottom 26| 0.8% || oh 45| 0.6%
16 || the left 241 0.7% || and a 45| 0.6%
17 || crescent moon 23| 0.7% || alright 44 | 0.5%
18 || the lemon 22| 0.7% || okay um 43 | 0.5%
19 || the moon 20 | 0.6% || the uh 42 | 0.5%
20 || tennis racket 20 | 0.6% || the right 41 | 0.5%
21 | blue lion 19| 0.6% | the bottom 39| 0.5%
22 || the whale 18 | 0.6% | | have 39| 0.5%
23 || the crescent 18 | 0.6% || yellow lion 37| 0.5%
24 || the middle 17 | 0.5% || the middle 37| 0.5%
25| of it 17| 0.5% || I've got 34| 0.4%

Table 6.3: 25 most frequent nal bigrams preceding each turmntaking type.

45
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IPUs. Such unigrams comprise mostly a rmative cue words sud as okay, yeah or alright.
These words are strongly overloaded, in the sense that they ay perform very dierent
functions. For example, they may start a new discourse segnm¢ (thus holding the oor),
or nish the current discourse segment (thus potentially releasing the oor). Therefore, the
occurrence of these words does not constitute a turn-yieldig or turn-holding cue per se
rather, additional contextual, acoustic and prosodic infaomation is needed to disambiguate
their meaning. A rmative cue words are studied in detail in P art Ill of this thesis.

Most of the top IPU- nal bigrams preceding smooth switches and holds are speci c to
the computer games in which the subjects participated. The ards used in the Cards game
tend to be spontaneously described by subjects from top to bbom and from left to right;

for example,

A: | have a blue lion on top # with a lemon in the bottom left # and a yellow
crescent moon in- # i- # in the bottom right

B: oh okay]...]

In consequence, bigrams such aswer right and bottom right are common beforeS, while
on top or bottom left are common beforeH . These are all task-speci ¢ lexical constructions
and do not constitute stereotyped expressions in the traditonal sense.

A rmative cue words and game-speci ¢ expressions cover thetotality of the 25 most
frequent IPU- nal bigrams listed in Table 6.3. Further down in the list, we nd some rare
uses of stereotyped expressions preceding smooth switchesdl with only marginal counts:
| guess (6 instances, or 0.18% of the total),l think (4), and you know (2). Notably, there
were more instances of each of these expressions before oldb, 5 and 21, respectively,
challenging the idea that the mere occurrence of these expssions works as a strong turn-
yielding cue. As with a rmative cue words, more information from other sources seems to
be necessary to disambiguate the meaning of these expresss

While we do not nd clear examples of lexical turn-yielding cues in our task-oriented
corpus, we do nd two lexical turn-holding cues: word fragments and lled pauses. As
depicted in Table 6.4, both are much rarer before smooth swithes §) than before holds
(H). This suggests that, after a word fragment or a lled pause,the speaker is much more

likely to intend to continue holding the oor. This notion of dis uencies serving as a turn-
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S H
Word fragments 10 (0.3%)| 549 (6.7%)
Filled pauses 31 (1.0%)| 764 (9.4%)
Total IPUs | 3246 (100%)| 8123 (100%)

Table 6.4: Distribution of IPU- nal word fragments and lle d pauses preceding each

turn-taking type.

taking device has been studied by Goodwin (1981), who showdhat they may be used to

secure the listener's attention at turn beginnings.

Summary of ndings: We nd no evidence in the Games Corpus that stereotyped
expressions, such agou know or | think, represent lexical turn-yielding cues. In fact,
a rmative cue words, such as okay or yeah and game-speci ¢ expressions, such dewer
right or on top, cover all of the most frequent IPU- nal unigrams and bigrams, preceding
both smooth switches and holds. A rmative cue words are overloaded, used both to initiate
and to end discourse segments, among other functions; thushey do not represent lexical
turn-yielding cues in themselves. While game-speci ¢ expessions are likely to aid listeners
in detecting or anticipating turn endings, they are particular to the computer games played
by the subjects in the Games Corpus, and thus not generalizab to other task-oriented
dialogues. However, our ndings suggest that participantsin task-oriented dialogues tend
to structure their utterances in a way that facilitates the p rocessing by the listener, a way
that may even be negotiated and agreed upon | either implicit ly or explicitly | by both
participants at the beginning of the conversation. For exanple, in the Games Corpus,
subjects tend to describe the cards in a top to bottom, left to right fashion. When such
a structure is available, listeners may e ectively use it asa turn-yielding cue to detect or

anticipate turn boundaries.

6.1.5 Textual completion

Several authors (Duncan, 1972; Sacks et al., 1974; Ford andibmpson, 1996; Wennerstrom

and Siegel, 2003, inter alia) claim that some sort of complebn independent of intonation
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and interactional import functions as a turn-yielding cue. Although some call this syntactic
completion, all authors acknowledge the need for semantic and discouesinformation in
judging utterance completion: \we judged an utterance to be syntactically complete if, in
its discourse context, it could be interpreted as a completeclause" (Ford and Thompson,
1996, p. 143); \context could also in uence coding decisiog" (Wennerstrom and Siegel,
2003, p. 85). Therefore, we choose the more neutral terrtextual completion for this
phenomenon.

In this section we describe how we manually annotated a portin of the corpus using
a simple de nition of textual completion. These data were sitbsequently used to train a
machine learning (ML) classi er, with which we automatically labeled the whole Games
Corpus. Finally, we present results relating both manual ard automatic textual completion

labels to turn-taking phenomena.

6.1.5.1 Manual labeling

In conversation, listeners judge textual completion incranentally and without access to
future phrases. To simulate the same conditions in the labéhg task, annotators were asked
to judge the textual completion of a turn up to a target pause, and did not have access to
the transcripts after the target pause. Annotators had acces only to the written transcript
of the current turn up to the target pause, and also the full previous turn by the other

speaker (if any). These are a few sample tokens:

A: the lion's left paw our front

B: yeah and it's th- right so the

A: and then a tea kettle and then the wine

B: okay well | have the big shoe and the wine

Al
B: okay there is a belt in the lower right a microphone in the loweleft

A: so when you say directly above you really mean directly abotiee right arrow

the the arrow the owl
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B: the owl yeah

We selected 400 tokens at random from the Games Corpus. The tget pauses were
also chosen at random. To obtain a good coverage of the varien present in the corpus,
tokens were selected in such a way that 100 of them were foll@g by speech from the same
speaker (i.e., preceding a hold, oH), 100 by a backchannel from the other speakergBC ),
100 by a smooth switch to the other speaker $), and 100 by a pause interruption by the
other speaker Pl ). Three annotators labeled each token independently as diter complete

or incomplete according to these guidelines:

Determine whether you believe what speaker B has said up to tis point could
constitute a complete response to what speaker A has said inhe previous
turn/segment.

Note: If there are no words by A, then B is beginning a new task,such as

describing a card or the location of an object.

To avoid biasing the results, annotators were not given the tirn-taking labels of the tokens.

Inter-annotator reliability is measured by Fleiss' at 0.8144, which corresponds to
the “almost perfect' agreement category. The mean pairwisagreement between the three
subjects is 90.8%. For the cases in which there is disagreemdetween the three annotators,
we adopt the majority label as our gold standard; that is, the label chosen by two

annotators.

6.1.5.2 Automatic classi cation

Next, we train a machine learning model using the 400 manuayl annotated tokens as train-
ing data, to automatically classify all IPUs in the corpus as either complete or incomplete.
For each IPU we extract a number of lexical and syntactic featires from the current turn

up to the IPU itself:
lexical identity of the IPU- nal word ( w);
POS tag of w;

simpli ed POS tag of w (Noun, Verb, Adjective, Adverb, Contraction, Other);
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POS tags of the IPU- nal bigram;

simpli ed POS tags of the IPU- nal bigram;

number of words in the IPU;

a binary ag indicating if w is a word fragment;

size and type of the biggest bp) and smallest (sp) phrase that end in w;

binary ags indicating if each of bp and sp is a major phrase (NP, VP, PP, ADJP,
ADVP);

binary ags indicating if w is the head of each obp and sp.

We choose these features in order to capture as much lexicahd syntactic information as
possible from the transcripts. The motivation for lexical identity and part-of-speech features
is that complete utterances are unlikely to end in expressins such asthe or but there, and
more likely to nish in nouns, for example. Since fragments ndicate almost by de nition
that the utterance is incomplete, we also include a ag indiating if the nal word is a
fragment. As for the syntactic features, our intuition is th at the boundaries of textually
complete utterances tend to occur between large syntactic fprases | a similar approach
is used by Koehn et al. (2000) for predicting intonational ptrase boundaries in raw text.
The syntactic features are computed using two di erent parsers: Collins (Collins, 2003),
a high-performance statistical parser; and CASS (Abney, 196), a partial parser especially
designed for use with noisy text.

We experiment with several learners, including the propodional rule learner Ripper
(Cohen, 1995), the decision tree learnefC4.5 (Quinlan, 1993), Bayesian networks (Hecker-
man et al., 1995; Jensen, 1996) and support vector machineS¥YM) (Vapnik, 1995; Cortes
and Vapnik, 1995). We use the implementation of these algothms provided in the Weka
machine learning toolkit (Witten and Frank, 2000). Table 6.5 shows the accuracy of the
majority-class baseline and of each classier, using 10-fd cross validation on the 400
training data points, and the mean pairwise agreement by thethree human labelers. The

linear-kernel SVM classi er achieves the highest accuragysigni cantly outperforming the
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Classi er | Accuracy

Majority-class (‘complete’) 55.2%
C4.5| 552%

Ripper 68.2%

Bayesian networks| 75.7%

SVM, RBF kernel 78.2%

SVM, linear kernel | 80.0%

Human labelers (mean agreement) 90.8%

Table 6.5: Mean accuracy of each classi er for the textual copletion labeling task, using

10-fold cross validation on the training data.

majority-class baseline, and approaching the mean agreemeof human labelers. However,
there is still margin for further improvement. New approaches could include features cap-
turing information from the previous turn by the other speaker, which was available to the
human labelers but not to the ML classi ers. Also, the sequertial nature of this classi ca-
tion task might be better exploited by more advanced graphial learning algorithms, such
as Hidden Markov Models (HMM; Rabiner, 1989) and Conditiond Random Fields (CRF;
Laerty et al., 2001).

6.1.5.3 Results

First we examine the 400 tokens that were manually labeled bythree human annotators,
considering the majority label as the gold standard. Of the DO tokens followed by a
smooth switch, 91 were labeled textually complete, an overlvelming proportion compared
to those followed by a hold (42%). A chi-square test reports hat this distribution departs
signi cantly from random ( 2 =51:7;d:f: =1;p 0), suggesting that textual completion
as de ned earlier in this section constitutes a necessary, Wit not su cient, turn-yielding

cue.

The analysis of tokens automatically annotated for textual completion provides addi-

tional support for this hypothesis. We used the highest perbrming classi er, the linear-
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kernel SVM, to label all IPUs in the corpus. Of the 3246 IPUs preceding a smooth switch,
2649 (81.6%) were labeled textually complete; while just abut half of all IPUs preceding
a hold (4272/8123, or 52.6%) were labeled complete. These mbers depart signi cantly

from a random distribution ( 2 = 818:7;d:f: = 1;p 0), con rming the predominance of

textual completion before smooth switches.

Speaker variation: To investigate speaker variation for the textual completion cue, we
compute the proportion of complete IPUs preceding smooth sviches (S) and holds (H) for
each speaker. In all cases, the proportion befor8 ranges from 71.4% to 88.5%, and before
H, from 46.5% to 60.9%, indicating that our general ndings are valid across speakers.

Detailed results for each speaker are provided in Appendix H.

Summary of ndings: We provide a de nition of textual completion, as well as a proce-
dure for manual annotation that achieves a high inter-labekr agreement rate. Subsequently,
we show how a relatively small manually labeled data set may b utilized to train a ML
classi er that approaches human performance. When examimig both manually and auto-
matically labeled data, we nd that textual completion seems to work almost as a necessary
condition before smooth switches, but not before holds. A pssible interpretation is that
textual completion functions as a turn-yielding cue, with listeners more likely to take the

speaking turn after completion points.

6.1.6 Voice quality

Voice quality has received some attention in the literaturein connection to turn-taking. For
instance, Ogden (2002; 2004) annotates voice quality impssionistically, and nds creaky
voice to be a turn-yielding cue in Finnish, independent of syitactic, lexical and intonational
cues. In this section we examine the relation between turndking phenomena and three
objective measures of voice quality: jitter, shimmer and ndse-to-harmonics ratio (NHR).
Jitter and shimmer correspond to variability in the frequency and amplitude of vocal-fold
vibration, respectively; NHR is the energy ratio of noise to harmonic components in the

voiced speech signal. Measurements of these features haveen shown to correlate with
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perceptual evaluations of voice quality (Eskenazi et al., 990; Kitch et al., 1996; Bhuta et

al., 2004; inter alia).

Using the Praat toolkit, we compute the three features for eah IPU over the entire
segment and over the nal 500 and 1000 ms, and subsequently spker-normalize them
using z-scores. We compute jitter and shimmer over just the voiced prtions of the signal
for improved robustness. Figure 6.4 summarizes the compaon of these features for IPUs

immediately preceding smooth switches §) and holds (H). For all three features, the mean
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Figure 6.4: Speaker-normalized jitter, shimmer and noisde-harmonics ratio, over the

whole IPU and over its nal 500 and 1000 ms.

value for IPUs preceding S is signi cantly higher than for IPUs preceding H (p < 0:01),
with the di erence increasing towards the end of the IPU. In other words, the likelihood of
a turn-taking attempt from the interlocutor increases with higher values of jitter, shimmer
and NHR towards the end of an IPU, suggesting that voice qualy plays a role as a turn-

yielding cue.
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Speaker variation: When comparing the mean jitter, shimmer and NHR over the nal
500 milliseconds of IPUs preceding and H for each individual speaker, we nd that 12 of
the 13 speakers show the same signi cant di erences for jitér, all 13 speakers for shimmer,
and all 13 speakers for NHR. For jitter, the remaining speake (id 113) shows the same
relation between the group means, but does not reach signiance. This supports that our
ndings for voice quality are also true across speakers. Deiiled results for each individual

speaker are shown in Appendix E.1.

Summary of ndings: The examination of three acoustic features associated witlthe
perception of voice quality | jitter, shimmer and NHR | revea Is that all three of them
show signi cantly higher values before turn boundaries than before turn-internal pauses.
Therefore, voice quality seems to function as a turn-yielding cue, potentially aiding listeners
in detecting and/or anticipating turn endings. To the best of our knowledge, this is the
rst work to propose voice quality cues in SAE and to test them empirically. Future
work should explore additional features, such as relative @erage perturbation (RAP), soft
phonation index (SPI), and amplitude perturbation quotient (APQ), all of which have been

shown to capture di erent aspects of voice quality.

6.1.7 IPU duration

A nal feature that we investigate as a turn-yielding cue is the duration of the IPU, measured
in seconds or in number of words. Cutler and Pearson (1986) d mild evidence of longer
utterances being judged as turn- nal by listeners. Our resuts are summarized in Figure 6.5.
The number of words in IPUs preceding smooth switches ) is signi cantly smaller than

in IPUs preceding holds H) (anova , p < 0:01). For duration in seconds, such di erence

in means betweenS and H is also signi cant at p=0:016.

Speaker variation: All 13 speakers show a signi cantly larger number of words inlPUs
preceding smooth switches than in those preceding holds. kewise, for nine speakers such
di erence is also signi cant when considering the IPU duration in seconds; for the other
four speakers, the di erences are not signi cant. AppendixE.1 provides detailed results for

each individual speaker.
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Figure 6.5: IPU duration in seconds and in number of words, bth raw and

speaker-normalized.

Summary of ndings: Turn-medial IPUs tend to be shorter than turn- nal ones, sug-
gesting that IPU duration could function as a turn-yielding cue, and supporting similar
ndings by Cutler and Pearson (1986). We obtain similar resuts when measuring duration

in seconds or in number of words.

6.1.8 Speaker variation

Table 6.6 summarizes the evidence found of the existence ohé seven turn-yielding cues
described above, for each of the thirteen speakers in the Gags Corpus. Six speakers show
evidence of all seven cues, while the remaining seven speekshow at least six cues. Pitch
level is the least reliable cue, present only for seven subges. Notably, the cues related to
intonation, speaking rate, textual completion, voice qualty, and IPU duration are present

for all thirteen speakers.
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Speaker 101|102|103| 104|105| 106| 107| 108|109/ 110|111} 112|113
Intonation PP PP PP PP P PP PP
Speaking rate PP PP PP PP P PP PP
Intensity level PP PP PP PP PP PP
Pitch level PP P P p|p p
Textual completion | P | P | P [P [P [P P PP PR IP P
Voice quality p p p p p p p p p p p p p
IPU duration p p p p p p p p p p p p p

Table 6.6: Presence of turn-yielding cues for each speaker.

6.2 Combining turn-yielding cues

So far, we have shown strong evidence supporting the exister of individual acoustic,
prosodic and textual turn-yielding cues. Now we shift our atention to the manner in

which they combine together to form more complex turn-yieldng signals. We consider two
approaches: in thediscrete approach , individual cues may be either present or absent;
in the continuous approach , individual cues range from 0 (absent) to 1 (present). The
discrete approach is similar to the one proposed by Duncan @72); the continuous approach
represents a natural generalization. Below we describe bbtapproaches and the results

obtained with each.

6.2.1 Discrete approach

For each individual cue type, we choose two or three featureshown to correlate strongly
with smooth switches, as seen earlier in this chapter. Theséeatures are summarized in
Table 6.7. For example, the individual turn-yielding cue related to IPU- nal intonation is
represented by two objective measures of §-slope, computed over the nal 200 and 300
milliseconds of the IPU.

Next, we estimate the presence or absence on a given IPU of deaof the individual cues
in the left column of Table 6.7 using the procedure depictedn Figure 6.6. This procedure

rst de nes the default case (or null hypothesis), that the cue is absent. The cue is present
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Individual cues Acoustic features

Absolute value of the Fy slope over the IPU- nal 200 ms
Intonation
Absolute value of the Fy slope over the IPU- nal 300 ms

_ Syllables per second over the whole IPU
Speaking rate
Phonemes per second over the whole IPU

Mean intensity over the IPU- nal 500 ms

Intensity level
Mean intensity over the IPU- nal 1000 ms
Mean pitch over the IPU- nal 500 ms
Pitch level
Mean pitch over the IPU- nal 1000 ms
IPU duration in ms
IPU duration
Number of words in the IPU
Jitter over the IPU- nal 500 ms
Voice quality Shimmer over the IPU- nal 500 ms

Noise to harmonics ratio over the IPU- nal 500 ms

Table 6.7: Features used to estimate the presence of individal turn-yielding cues. All

features were speaker normalized using-scores.

present false
for each feature f modeling c:
fs meanf across all IPUs preceding a smooth switch $)
fy meanf across all IPUs preceding a hold i)
fu u's value for f
if jfu fsj<jfy fnpjthen present true
end for

return present

Figure 6.6: Procedure to estimate the presence or absence afec on IPU u

(discrete approach).
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if, for any of its corresponding features, the value for the gven IPU is closer to the mean
value of all IPUs preceding a smooth switch §) than that of all IPUs preceding a hold

(H). In other words, if any feature related to a particular cue shows a value close to that
of a turn boundary, then the null hypothesis is discarded andthe cue is considered to be

present.

Additionally, we automatically annotate all IPUs in the cor pus for textual completion
using the linear-kernel SVM classi er described in Section6.1.5. IPUs classi ed as com-
plete are considered to bear the textual completion turn-yelding cue. Since this feature is

essentially binary, no further processing is necessary.

We rst analyze the frequency of occurrence of conjoined intvidual turn-yielding cues.
Table 6.8 shows the top ten frequencies for IPUs immediatelbefore smooth switches §),
holds (H), pause-interruptions (Pl ) and backchannels BC ). For IPUs preceding a smooth
switch (S), the most frequent cases correspond to all, or almost all, wes present at once.
For IPUs preceding a hold H), the opposite is true: those with no cues, or with just one or
two, represent the most frequent cases. Two di erent thingsseem to happen before pause
interruptions ( P1): some of the IPUs present four or even ve conjoined cues; tters present
practically none, as beforeH. This is consistent with two plausible explanations for a PI
to occur in the rst place: (1) that the speaker displays | pos sibly involuntarily | one
or more turn-yielding cues, thus leading the listener to beleve that a turn boundary has
been reached; or (2) that the listener chooses to break in, gardless of any turn-yielding
cues. Finally, the distribution of cues beforeBC does not show a clear pattern, suggesting
that backchannel-inviting cues di er from turn-yielding ¢ ues. Backchannel-inviting cues are

discussed in detail in Chapter 7.

Table 6.9 shows the same results, now grouping together alPUs with the samenumber
of cues, independently of the cue types. Again, we observe &t larger proportions of IPUs

preceding S present more conjoined cues than IPUs precedingl, PI and BC .

Next we look at how the likelihood of turn-taking attempts varies with respect to the
number of individual cues displayed by the speaker, a relatin hypothesized to be linear
by Duncan (1972). Figure 6.7 shows the proportion of IPUs wih 0-7 cues present that

are followed by a turn-taking attempt from the interlocutor | namely, the number of S
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S H Pl BC
Cues Count | Cues Count | Cues Count | Cues Count
1234567 267 ...4.. 392 | .23456. 17| .2.5.7 53
.234567 226 | ...... 7 247 ..4.. 13| .2...7 29
1234.67 138 ....... 223 ...45. 12| 12..5.7 23
.234.67 109 ..4..7 218 ....... 9| .2.45.7 23
.23..67 98 | ...45. 178 | 123..6 7| 12..567 21
..34567 94 | 2.7 166 | .234.6 71 .2.5.. 21
123..67 93 | 1234.67 163 | .2.4.6. 7| 12.4567 18
.2.4567 73| .2.5.7 157 | ..3456 7| .2.4567 17
2.45.7 73| 123..67 133 ..34.6 7 | 1234567 16
12.4.67 70 | 1234567 130 ...4..7 7112....7 16
Total 3246 | Total 8123 | Total 274 | Total 553

59

Table 6.8: Top 10 frequencies of complex turn-yielding cuefor IPUs preceding S, H, PI

and BC . For each of the seven cues, a digit indicates presence, anddat, absence.

1: Intonation; 2: Speaking rate; 3: Intensity level; 4: Pitch level; 5. IPU duration;

6: Voice quality; 7: Textual completion.

and PI divided by the number of S, PI, H and BC , for each cue count® The dashed line

corresponds to a linear model tted to the data (Pearson's carelation test: r2 = 0:969), and

the continuous line, to a quadratic model (2 = 0:995). The high correlation coe cient of

the linear model supports Duncan's hypothesis, that the likelihood of a turn-taking attempt

by the interlocutor increases linearly with the number of individual cues displayed by the

speaker. However, aranova test reveals that the quadratic model ts the data signi can tly

better than the linear model (F (1;5) = 23:014; p = 0:005), even though the curvature of

the quadratic model is only moderate, as can be observed in th gure.

% In this analysis we only consider non-overlapping exchanges, thus leaving out O, I, Bl and BC _O;

overlapping exchanges are addressed in Chapter 8. Also, nog¢ that backchannels are not considered turn-

taking attempts.
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# Cues S H PI BC
0 4 (01%)| 223 (27%)| 9 (3.3%)| 1  (0.2%)
1 52 (1.6%)| 970 (11.9%)| 33 (12.0%)| 15  (2.7%)
2 241  (7.4%)| 1552 (19.1%)| 59 (21.5%)| 82  (14.8%)
3 518 (16.0%)| 1829 (22.5%)| 59 (21.5%)| 140  (25.3%)
4 740 (22.8%)| 1666 (20.5%)| 53  (19.3%)| 137  (24.8%)
5 830 (25.6%)| 1142 (14.1%)| 46 (16.8%)| 113  (20.4%)
6 594 (18.3%)| 611 (7.5%)| 12  (4.4%)| 49  (8.9%)
7 267 (8.2%)| 130 (1.6%)| 3  (1.1%)| 16  (2.9%)
Total | 3246 (100%)| 8123 (100%)| 274 (100.0%)| 553 (100.0%)

Table 6.9: Distribution of number of turn-yielding cues displayed in IPUs precedingS, H,

Pl and BC.
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Figure 6.7: Percentage of turn-taking attempts (either S or Pl ) following IPUs with 0-7

turn-yielding cues.

We repeat the same analysis for each speaker separately. Eig 6.8 plots, for each
of the 13 speakers in the corpus, the probability of a turn-tking attempt per number

of displayed cues. Table 6.10 shows the correlation coe ciet r? of linear and quadratic
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Figure 6.8: Percentage of turn-taking attempts (either S or Pl ) following IPUs with 0-7

turn-yielding cues, per speaker.

regressions performed separately on the data from each sgea. In all cases, the coe cients
are very high, indicating that the models explain most of the variation present in the
data. Additionally, the rightmost column in the table shows the p-values of anova tests
conducted to compare the goodness of t of both regressions.The t of the quadratic
model is signi cantly better than that of the linear model fo r four speakers (101, 103, 109
and 112), and such di erence approaches signi cance for twather speakers (106 and 111).
For the remaining seven speakers, the linear and quadratic wdels provide statistically

indistinguishable explanations of the data.

The slight curvature of the quadratic model, together with t he failure of the quadratic
models to improve over the linear models for all speakers, mlicates that both linear and
guadratic models represent good options for explaining thevariation in the data. We may
conclude then that, in the Games Corpus, we observe that theikelihood of a turn-taking
attempt by the interlocutor increases in a nearly linear fashion with respect to the number

of cues displayed by the speaker.
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Speaker| LM r? | QM r? | LM vs. QM p-value
101 0.919 | 0.983 0.007
102 0.929 | 0.952 0.186
103 0.817 | 0.954 0.012
104 0.884 | 0.925 0.159
105 0.975 | 0.983 0.173
106 0.957 | 0.978 0.076
107 0.955 | 0.959 0.502
108 0.953 | 0.953 0.811
109 0.970 | 0.997 0.002
110 0.913 | 0.942 0.175
111 0.948 | 0.977 0.053
112 0.970 | 0.989 0.035
113 0.895 | 0.898 0.753
All 0.969 | 0.995 0.005

Table 6.10: Per-speaker linear and quadratic models showinthe relation between number

of displayed cues and likelihood of a turn-taking attempt.
6.2.2 Continuous approach

In the previous section we described the results of a discretapproach for combining in-
dividual turn-yielding cues, which assumes that each cue mabe either present or absent.
Now we introduce a generalization of that concept, allowingthe presence of a cue to range
from O (absent) to 1 (present), in what we call the continuousapproach.

As in the discrete case, we choose for each individual cue twor three features shown
to correlate strongly with smooth switches, as summarizedn Table 6.7 (page 57). For each
feature f in the right column of the table, its presence (p) on a given IPU (u) is a real
number ranging from 0 to 1, and is de ned as follows:

fu fH
fs fHy
if p<Othen p O

if p>1then p 1
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wheref g is the mean value off across all IPUs preceding a smooth switchf j is the mean
value of f across all IPUs preceding a hold; and, is the mean value off on the target
IPU. Figure 6.9 illustrates how p varies as a function off ;; note that p approaches 1 ag

gets closer tof g, and it approaches 0 adf, gets closer tof 4. Finally, the presence of a

Figure 6.9: Presence [f) of a given feature, as a function of the feature's value over

a given IPU (f,).

turn-yielding cue is de ned simply as the maximum presence of the features modiag
the cue. For example, if the presence of the two features motlag the speaking rate cue |
syllables per second and phonemes per second | are 0.8 and Q.¢hen the presence of such

cue is 0.8.

The textual completion cue is a special case, as it is esseatly binary. Therefore, we
leave it as is, without transforming it into a continuous cue. Again, we use the automatic
annotations of textual completion performed with the SVM-based classi er (as described
in Section 6.1.5), and assign 1 to IPUs classi ed as "‘complet, and 0 to those classi ed as

‘incomplete’.

In the previous section, we studied how the likelihood of tun-taking attempts varies with
respect to the number of individual cues displayed by the spaker. Under the continuous
approach we cannot talk about the number of cues; instead, weise thesum of continuous

cues. The resulting sum for a given IPU is a real number rangig from 0 to 7.

The results of all tests using continuous cues are nearly id#ical to those using discrete
cues, both for all speakers together and for each speaker inddually. For example, Figure

6.10 shows the proportion of IPUs with di erent sums of continuous cues that are followed
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by a turn taking attempt from the interlocutor. 4 The dashed line corresponds to a linear

model tted to the data; the continuous line, to a quadratic m odel. Again, both models
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Figure 6.10: Percentage of turn-taking attempts following IPUs with a given sum of

continuous turn-yielding cues.

are highly correlated with the data (Pearson's correlation tests; linear model: r? = 0:963;
quadratic model: r? = 0:984), and the quadratic model has a signi cantly better t wh en
considering all speakers togetherff = 0:0016), but not for each speaker independently (only
for 6 of the 13 speakers). For simplicity, we omit all other results for continuous cues, as

they would add nothing novel to our analysis.

6.3 Discussion

In this chapter we have presented evidence of the existencd seven turn-yielding cues. In
other words, we have described seven measurable events thiaike place with a signi cantly

higher frequency on IPUs preceding smooth switches (when #hcurrent speaker completes
an utterance and the interlocutor takes the turn after a short pause) than on IPUs preceding

holds (when the current speaker continues speaking after ahert pause). These events may

4 To replicate the analyses of the previous section, we binnedthe sums in intervals of width 0.5.
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be summarized as follows:
a falling or high-rising intonation at the end of the IPU,;
a reduced lengthening of IPU- nal words;
a lower intensity level,
a lower pitch level;
a point of textual completion;
a higher value of three voice quality features: jitter, shinmer, and NHR; and
a longer IPU duration.

Additionally, we have shown that, when several turn-yielding cues occur simultaneously,
the likelihood of a subsequent turn-taking attempt by the interlocutor increases in almost
a linear fashion. In the Games Corpus, the percentage of IPU$ollowed by a turn-taking
attempt ranges from 5% when no turn-yielding cues are presdnto 65% when all seven cues
are present.

These ndings could be used to improve the turn-taking decisons of state-of-the-art IVR
systems. In particular, our model of turn-taking provides answers to three of the questions

posed in Chapter 3:

Q1. The system wants to keep the oor; how should it formulate its output to avoid an

interruption from the user?

According to our model, including as few as possible of the deribed turn-yielding cues in
the system's output will decrease the likelihood that the usr will take the turn. Therefore,
when the system intends to continue holding the oor, it should end its IPUs in plateau
intonation, with high intensity and pitch levels, leaving u tterances textually incomplete

(e.g., preceding pauses with expressions such asd or also), and so on.

Q3. The system wants to yield the oor to the user; how should t formulate its output to

invite the user to take the turn?
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This situation corresponds to the opposite of the previous gestion. If the system includes
in its output as many of the described turn-yielding cues as pssible, a turn-taking attempt
by the user will be more likely to take place. Thus, if the sysem intends to cede the oor
to the user, it should end the nal IPU in either falling or hig h-rising intonation (e.g.,
depending on whether the system's message is a statement ordirect question), with low

intensity and pitch levels, and so on.

Q5. The user is speaking; how can the system know when it is anp@ropriate moment to

take the turn?

Most current systems simply wait for a long-enough pause frm the user before attempting
to take the turn, a technique that might be possible to improve using the ndings in our
study. Although the diculty of estimating each turn-yield ing cue will vary according
to many implementation details, we may draft a high-level description of the turn-taking
decision procedure. At every pause longer than 50 millisecals, the system estimates the
presence of as many cues as possible over the user's nal IPDepending on the number of
detected cues, the system may then make an informed turn-takg decision: If the number
of detected cues is high, it may choose to conduct a turn-takig attempt immediately;

otherwise, it may continue waiting, thus defaulting to its original behavior.

The addition to current IVR systems of the capabilities desaibed in the answers to Q1,
Q3 and Q5 could e ectively improve their naturalness and usdility, by o ering users a
turn-taking experience that resembles more closely the nanal interaction in human-human

conversation.

An implicit assumption of our study is that all turn-yieldin g cues are equally important,
and contribute with either 0 or 1 to the total count. While thi s is a convenient assumption
to simplify a rst approach to the problem, it is also not necessarily true. For example,
we have mentioned that the textual completion cue seems to wi almost as a necessary
condition for smooth switches, which does not appear to be th case for other cues. A
possible topic for future research, then, is to explore the ssignment of numeric weights to

the di erent cues, in order to account for their relative imp ortance.



CHAPTER 6. TURN-YIELDING CUES 67

Another future research topic is to further investigate tur n-yielding cues related to voice
guality. Additional features should be incorporated into the analysis, such as relative aver-
age perturbation (RAP), soft phonation index (SPI), and amplitude perturbation quotient
(APQ), all of which have been shown to capture di erent aspeds of voice quality. Further-
more, we have chosen to collapse jitter, shimmer and NHR intcone simple voice quality
cue, but these features could instead be used as ner grainetirn-yielding cues, perhaps in
combination with the numeric weights mentioned in the previous paragraph.

Finally, we do not nd evidence in the Games Corpus of lexicalcues related to stereo-
typed expressions such agou know or | think. Larger corpora should be examined for
the existence of such cues. However, we do nd frequent use ekpressions such asower
right or on top, which appear to function as task-speci c turn-taking cues Future research
should investigate this issue in more detail, as speech pressing applications could bene t
from it. Additionally, we nd that a rmative cue words, such  as okay or alright, seem to
play a central role in the organization of turn-taking in conversations. These words are
heavily overloaded, used to convey acknowledgment, to backannel, and to begin or end
discourse segments, among other functions. We devote Partllof this thesis to the study

of a rmative cue words in the Games Corpus.
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Chapter 7

Backchannel-Inviting Cues

We continue our study of turn-taking phenomena by focusing m a second set of cues pro-
duced by the speaker that may induce a particular behavior fom the listener, which we
term backchannel-inviting cues . Backchannels are short expressions, such at-huh or
mm-hm, uttered by the listener to convey that they are paying attention, and to encourage
the speaker to continue. Normally, they are neither disruptive nor acknowledged by the
speaker holding the conversational oor. Hypothetically, speakers produce a set of cues
marking speci c moments within speaking turns at which listeners are welcome to produce
backchannel responses.

Finding out whether such cues exist and being able to model ttm could help answer

two of the empirical questions discussed in the introductiam of Part Il:

Q2. The system wants to keep the oor, ensuring that the user § paying attention; how

should it formulate its output to give the user an opportunit y to utter a backchannel?

Q6. The user is speaking; how can the system know whether andhen it should produce

a backchannel as positive feedback to the user?

In this chapter we investigate the existence of lexical, acostic and prosodic backchannel-
inviting cues. Using the turn-taking categories availablein our corpus, we compare IPUs
preceding a backchannel BC ) to IPUs preceding a hold (H), making the strong assumption

that such cues, if any exist, are more likely to occur in the femer group. Additionally, we
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contrast IPUs beforeBC with those before a smooth switch §), to study how backchannel-
inviting cues di er from turn-yielding cues. The way backchannels are realized by speakers

is studied in further detail in Part 11l of this thesis.

7.1 Individual cues

We repeat the procedures described in Chapter 6, now lookingpr individual backchannel-
inviting cues instead of turn-yielding cues. We nd signi c ant di erences between IPUs
preceding BC and H for nal intonation, pitch and intensity levels, IPU durati on, and
voice quality. These results are summarized in Figures 7.1rad 7.2.

IPUs immediately preceding backchannels show a clear tendey towards a nal rising
intonation, as hypothesized by a preliminary study on the Games Corpus by Benus et
al. (2007). All pitch slope measures (raw and stylized, overthe IPU- nal 200 and 300
milliseconds) are signi cantly higher before BC than before S or H. As seen in Table

7.1, categorical ToBI labels support this nding. More than half of the IPUs preceding a

BC S H
H-H% | 257 55.7% | 484 (22.1%)| 513  (9.1%)
[[H-L% | 27 59%| 289 (13.2%)| 1680  (29.9%)
L-H% | 119 25.8% | 309 (14.1%)| 646  (11.5%)
L-L% 52  11.3%| 1032 (47.2%)| 1387 (24.7%)
No boundary tone 4 0.9% 16 (0.7%) | 1261  (22.4%)
Other 2 04%| 56  (2.6%)| 136  (2.4%)

Total | 461 100.0%| 2186 (100.0%)| 5623 (100.0%)

Table 7.1: ToBI phrase accent and boundary tone for IPUs preeding BC, Sand H.

backchannel end in a high-rise contour (H-H%), and about a garter with a low-rise contour
(L-H%). Together, these two contours account for more than 8% of all IPUs beforeBC ,
but only 36.2% and 20.6% of those beforé&s and H, respectively. Thus, nal intonation

presents very di erent patterns in IPUs preceding these three turn-taking categories: either

high-rising or low-rising before backchannels, either fding or high-rising before smooth
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Figure 7.1: Individual backchannel-inviting cues: (a) pitch slope and stylized pitch slope;

(b) pitch and intensity. Continued in Figure 7.2.
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Figure 7.2: Individual backchannel-inviting cues: (c) IPU duration; (d) voice quality.

Continued from Figure 7.1.
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switches, and plateau before holds.

Mean pitch and intensity levels tend to be signi cantly high er for IPUs beforeBC than
before the other two categories. This suggests that backchel-inviting cues related to

these two features function in a manner opposite to turn-yiéding cues.

We also nd that IPUs followed by backchannels tend to be sign cantly longer than
IPUs followed by either smooth switches or holds, both when reasured in seconds and in
number of words. Thus, IPU duration works not only as a potential turn-yielding cue (as

we say in the previous chapter) but also as backchannel-inting cues.

Finally, we nd di erences for just one of the three voice quality features under consid-
eration. Noise-to-harmonics ratio (NHR) tends to be signi cantly lower in IPUs preceding
BC than in those precedingH . Again, this backchannel-inviting cue is the opposite of tre
related turn-yielding cue, which corresponds to a high leveof NHR. For the other two voice

quality features, jitter and shimmer, the two groups are indistinguishable.

Next we look at lexical backchannel-inviting cues. We examie the distribution of part-
of-speech tags in IPU- nal phrases, and nd that as many as 725% of all IPUs preceding
backchannels end in either 'DT NN', "JJ NN', or 'NN NN' (Table 7.2) | that is, "determiner
noun' (e.g., the lion), “adjective noun', (blue mermaid), or "noun noun' (top point). In
comparison, the same three nal POS bigrams account for only31.1% and 21.3% of IPUs
preceding S and H, respectively. Furthermore, the three most frequent nal POS bigrams
beforeS and H add up to just 43.7% and 29.0%, showing more spread distribuons, and
suggesting that the part-of-speech variability for IPUs before BC is relatively very low.
These results strongly suggest the existence of a backchaehinviting cue related to the

part-of-speech tags of the IPU- nal words.

Speaker variation: We investigate the existence of the hypothesized backcharatkinvi-
ting cues for each individual speaker. Four subjects (ids 10, 104, 107 and 109) have fewer
than 20 instances of IPUs precedingBC , a count too low for statistical tests, and are thus
excluded from the analysis. Table 7.3 summarizes the evidee found of the existence of

the six backchannel-inviting cues described above, for ehcof the nine speakers with high
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BC S H

POS # % POS # % POS # %

DT NN 234 | 42.3% | DT NN 600 | 18.5% | DT NN | 1093 | 13.5%
JJ NN 100 | 60.4% | UH 578 | 36.3% | UH 832 | 23.7%
NN NN 67 | 72.5% | JJ NN 242 | 43.7% | JJ NN 430 | 29.0%
IN NN 12| 74.7%| NN NN 168 | 48.9% | IN DT 374 | 33.6%
DT JJ 12| 76.9% | DT JJ 111 | 52.3% | UH UH 243 | 36.6%
IN PRP 9| 78.5%| NN UH 96 | 55.3% | DT JJ 225 | 39.4%
NN RB 7| 79.7% | IN PRP 90 | 58.1% | IN NN 214 | 42.0%
DT NNP 7| 81.0%| UH UH 83 | 60.6% | NN NN 211 | 44.6%
VBZ VBG 6| 82.1%| JJR NN 83| 63.2% | DT UH 154 | 46.5%
NNS NN 5| 83.0%| INDT 67 | 65.2% | NN IN 112 | 47.9%
Total 553 | 100% | Total 3246 | 100% | Total 8123 | 100%

Table 7.2: Count and cumulative percentage of the 10 most frguent IPU- nal POS

bigrams precedingBC, Sand H.

enough counts! Dierences in intonation, duration and voice quality are signi cant for
the great majority of speakers, and a smaller proportion of peakers display di erences for
pitch and intensity. Also, all nine speakers show a marked pedominance of at least two
of the three nal POS bigrams mentioned above (‘DT NN', "JJ NN' and "NN NN") before
backchannels. Notably, no single acoustic/prosodic cue issed by all speakers; rather, each
seem to use their own combination of cues. For example, speak102 varies only intonation,
while speaker 108 varies only intensity level and IPU duraton. We conclude then that,
unlike the case of turn-yielding cues, the speaker variatio present in the production of
backchannel-inviting cues is not insigni cant, with di er ent speakers apparently displaying

di erent combinations of cues.

! Detailed results for each individual speaker are shown in Appendix E.2.
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Speaker 102 | 103 | 105 | 106 | 108 | 110 | 111 | 112 113
Intonation P P P P P P P
Pitch level P P P
Intensity level P P P P P P
IPU duration P P P P P P P P
Voice quality P P P P P P P
POS bigram p p p p p p p p p

Table 7.3: Presence of backchannel-inviting cues for eactpsaker.

7.2 Combining cues

After nding evidence of the existence of individual acousic, prosodic and textual back-
channel-inviting cues, we replicate the procedures desdred in the previous chapter to
investigate how such cues combine together to form complexgnals. The results are almost
identical when using the approach with discrete individual cues (either present or absent)
and its generalization to continuous values. For simplici, we present only the results of
the discrete approach in this section.

For each individual cue, we choose two features shown to strgly correlate with IPUs
preceding backchannels, as seen earlier in this chapter. Hse features are shown in Table
7.4. For example, the individual cue related to IPU- nal int onation is represented by two
objective measures of the  slope, computed over the nal 200 and 300 milliseconds of the
IPU.

Next, we estimate the presence or absence in a given IPU of damf the individual
cues in the left column of Table 7.4 using the same procedureedcribed in the previous
chapter (Figure 6.6, page 57). Additionally, we annotate adomatically all IPUs in the
corpus according to whether they end in one of the three POS Igirams found to strongly
correlate with IPUs preceding a backchannel: "DT NN', "JJ NN and "NN NN'. IPUs ending
in any such POS bigram are considered to bear the "POS bigrantackchannel-inviting cue.

Since this feature is essentially binary, no further procesing is necessary.

We rst analyze the frequency of occurrence of conjoined intvidual cues before each
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Individual cues Acoustic features
Fo slope over the IPU- nal 200 ms
Intonation
Fo slope over the IPU- nal 300 ms
Mean intensity over the IPU- nal 500 ms
Intensity level
Mean intensity over the IPU- nal 1000 ms
Mean pitch over the IPU- nal 500 ms
Pitch level
Mean pitch over the IPU- nal 1000 ms
IPU duration in ms
IPU duration
Number of words in the IPU
_ _ Noise to harmonics ratio over the IPU- nal 500 ms
Voice quality
Noise to harmonics ratio over the IPU- nal 1000 ms

Table 7.4: Acoustic features used to estimate the presencd mdividual

backchannel-inviting cues. All features were speaker noraized usingz-scores.

turn-taking category. Table 7.5 shows the top ten frequenags for IPUs immediately before
a backchannel BC ), a smooth switch (S), and a hold (H). For IPUs preceding BC , the
most frequent cases correspond to all, or almost all, cues psent at once. Very di erent is
the picture for IPUs preceding H, which show primarily few to no cues. For IPUs preceding
S, those with no cues, or just one or two, represent the most frguent cases. This suggests
that complex signals produced by speakers to yield the turn der considerably from signals

that invite the interlocutor to utter a backchannel response.

Table 7.6 shows the same results, now grouping together alPUs with the samenumber
of cues, independently of the cue types. Again, we observe &t larger proportions of IPUs

precedingBC show more conjoined cues than IPUs precedin® and H.

Next we look at how the likelihood of the occurrence of backchnnels varies with respect
to the number of individual cues conjointly displayed by the speaker. Figure 7.3 shows the
proportion of IPUs with 0-6 cues present that are followed bya backchannel from the

interlocutor | namely, the number of BC divided by the number of S, PI, H and BC,
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BC S H
Cues Count | Cues Count | Cues Count
123456 83| ... 243 | .2..5. 865
12.456 49| . 4.. 195 .23.5. 533
123.56 47 | .3... 172 ... 513
.23456 27| 1..... 153 ..3... 414
12345. 24| 1.4.. 123 ....5. 368
123.5. 19| 1.3.. 113 .2.45. 344
12.45. 16| ...4.6 111 .2.... 330
12..56 16| 1..4.6 108 | 1..... 256
1.3456 14 | ...45. 107 | ...45. 237
.2.456 14| 2. 94| ..4. 218
Total 553 | Total 3246 | Total 8123

Table 7.5: Top 10 frequencies of complex backchannel-invitg cues for IPUs preceding
BC, S and H. For each of the six cues, a digit indicates presence, and a absence.
1: Intonation; 2: Intensity level; 3: Pitch level; 4: IPU dur ation; 5: Voice quality;

6: Final POS bigram.

for each cue count? The dashed line in the plot corresponds to a linear model tted to
the data (r?2 = 0:812); the continuous line, to a quadratic model ¢ = 0:993). The t of
the quadratic model is signi cantly better than that of the | inear model, as reported by an
anova test (F(1;4) = 110:0; p < 0:001). In this case, the t of the linear model is not as
good as in the case of turn-yielding cues. The quadratic modgon the other hand, achieves
an almost perfect t and shows a marked curvature, con rming that a quadratic model
provides a good explanation for the relation between numbef backchannel-inviting cues

and occurrence of a backchannel.

We repeat the same analysis for each speaker separately. kg 6.8 plots the probability

2 Again, we only consider non-overlapping exchanges, thus leving out O, |, Bl and BC _O.
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# Cues BC S H

0 4  (0.7%)| 243 (7.5%)| 513  (6.3%)
1 17 (3.1%)| 746 (23.0%)| 1634 (20.1%)
2 57 (10.3%)| 912 (28.1%)| 2364 (29.1%)
3 90 (16.3%)| 723 (22.3%)| 1960 (24.1%)
4 139 (25.1%)| 379 (11.7%)| 1010 (12.4%)
5 163 (29.5%)| 192 (5.9%)| 501 (6.2%)
6 83 (15.0%)| 51 (1.6%)| 141 (1.7%)
Total | 553 (100%)| 3246 (100%)| 8123  (100%)

Table 7.6: Distribution of number of backchannel-inviting cues displayed in IPUs
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Figure 7.3: Percentage of backchannels following IPUs witlD-6 backchannel-inviting cues.

of occurrence of a backchannel per number of conjoined cud®r each of the 9 speakers with

high enough counts to conduct statistical tests. Table 6.10shows the correlation coe cient

(r?) of the linear and quadratic regressions performed separaty on the data from each

speaker.

The t of the linear models ranges from moderate at 625 to high at 0.884. In

seven out of nine cases, the t of the quadratic models is sigrcantly better, ranging from
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Figure 7.4. Percentage of backchannels following IPUs witlD-6 backchannel-inviting cues,

for nine speakers with high enough counts.

Speaker| LM r? | QM r? | LM vs. QM p-value
102 0.625 | 0.702 0.369
103 0.884 | 0.962 0.044
105 0.715 | 0.954 0.010
106 0.799 | 0.799 0.990
108 0.628 | 0.869 0.053
110 0.703 | 0.947 0.013
111 0.840 | 0.934 0.075
112 0.798 | 0.990 0.001
113 0.850 | 0.989 0.002
All 0.812 | 0.993 < 0:.001

Table 7.7: Per-speaker linear and quadratic regressions aie relation between number of

displayed conjoined cues and probability of a backchannel eacurrence.

0.702 to 0.990.

The fact that, for most speakers, the quadratic model ts the data better than the
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linear model, together with the marked curvature of the geneal quadratic model (as seen
in Figure 7.3), suggests that the quadratic model is well suied for explaining the relation
between the number of backchannel-inviting cues conjoingt displayed by the speaker, and

the likelihood of occurrence of a backchannel from the intdpcutor.

7.3 Discussion

In this chapter we have presented evidence of the existencef @ix backchannel-inviting
cues. That is, we have described six measurable events thaake place with a signi cantly
higher frequency on IPUs preceding backchannels than on IP& preceding holds or smooth

switches. These events may be summarized as follows:
a rising intonation at the end of the IPU;
a higher intensity level,
a higher pitch level;
a nal POS bigram equal to 'DT NN', "JJ NN' or "NN NN/;
a lower value of noise-to-harmonics ratio (NHR); and
a longer IPU duration.

We have also shown that, when several backchannel-invitingues occur simultaneously, the
likelihood of occurrence of a backchannel from the interlogtor increases in a quadratic
fashion, ranging from only 0% of IPUs followed by a backchanal when no cues are present,
to more than 30% when all six cues are present.

There are two important things worth emphasizing regarding our results. First, we
noted in the previous chapter that speaker variation is verylow for turn-yielding cues, with
almost all speakers producing all cues. In the case of backahnel-inviting cues, however,
there is considerably more speaker variation. In fact, eaclspeaker seems to use their own
combination of cues. Still, some of the ndings are true acr@s all speakers: all tend to

display at least two cues, and all share the POS bigram cue. Rure research should pursue
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this issue further, trying to shed some light on when, how andwhy speakers choose to use
a particular set of cues.

The second comment is related to the optionality of backchanels. We have shown that
a backchannel is produced by the other speaker after around®6 of IPUs containing all
six backchannel-inviting cues. This number looks quite smk when compared to the 65%
of turn-taking attempts following IPUs with all seven turn- yielding cues. The reason for
this disparity may be explained by a higher optionality of backchannels in SAE. It is per-
fectly conceivable that two speakers may have a successfubversation without producing
any backchannels | even if doing so requires not acting upon dear backchannel-inviting
cues. On the other hand, it is harder to imagine a conversatio in which both speakers
systematically ignore turn-yielding cues, taking the turn exclusively at places other than
transition-relevance places. In our corpus, this optionaty seems to be re ected in the
relatively low percentage of backchannels following rich Bckchannel-inviting signals.

The ndings presented in this chapter could be used to furthe improve the turn-taking
decisions of state-of-the-art IVR systems. In particular,our model of backchannels provides

answers to two of the questions posed in Chapter 3:

Q2. The system wants to keep the oor, ensuring that the user § paying attention; how

should it formulate its output to give the user an opportunit y to utter a backchannel?

According to our model, if the system includes in its output as many of the described
cues as possible, the likelihood of occurrence of a backchasl from the user will increase.
Thus, if the system intends to elicit a backchannel responsdrom the user, it should end
the nal IPU in one of the listed part-of-speech bigrams, with rising intonation (preferably

high-rising), high pitch and intensity levels, and so on.

Q6. The user is speaking; how can the system know whether andhen it should produce

a backchannel as positive feedback to the user?

The ability to detect points where the user invites the system to backchannel | or, at least,
where backchannels would be acceptable | could be coupled wth the procedure described
in the previous chapter for detecting turn endings based on tirn-yielding cues. Every time

the system estimates the presence of turn-yielding cues owéhe user's nal IPU, it could
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also estimate the presence of backchannel-inviting cues.Npte that some features may be
reused, as they belong to both cue sets.) If the number of detdéed backchannel-inviting

cues is high enough, then the system may utter a backchannelptherwise, it may keep
silent. Since at least three backchannel-inviting cues areopposite to the corresponding
turn-yielding cues (intensity, pitch and NHR) there is litt le risk of detecting both a turn

ending and a point for backchanneling at the same time.

Two of the nal considerations made in the previous chapter regarding future research
topics apply here as well. The assignment of numeric weighsotthe di erent cues, according
to their relative importance, might improve the model's description of the data. Also,
additional features shown to capture di erent aspects of vace quality features should be
examined as potential backchannel-inviting cues.

In this chapter we have studied the context in which backchamels are likely too occur.
Part Il of this thesis deals, among other things, with the acoustic, prosodic and pho-
netic characteristics of backchannels in the Games CorpusThose results are intended to
aid IVR systems in generating backchannels with the correctparameters, and in correctly

interpreting backchannel utterances from the user.
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Chapter 8

Overlapping Speech

Often in conversation speakers take the turn just before theend of their interlocutors'
contribution, without interrupting the conversational o w (Sacks et al., 1974). There is
evidence of the occurrence of these events in multiple lan@ges, including Arabic, English,
German, Japanese, Mandarin and Spanish (Yuan et al., 2007)and previous studies also
report situational and genre di erences. For example, nonface-to-face dialogues have sig-
ni cantly fewer speech overlaps than face-to-face ones (Bsth et al., 2005); people make
fewer overlaps when talking with strangers (Yuan et al., 20@); and speakers tend to make
fewer overlaps and longer pauses when performing di cult tasks (Bull and Aylett, 1998).
The existence of this phenomenon suggests that listeners arcapable of anticipating
possible turn endings, and poses the question of how they mage to do this. One pos-
sible explanation could be the early detection on the part ofthe listener of turn-yielding
and backchannel-inviting cues, such as the ones discussed previous chapters. That is,
listeners may be able to perceive such signals some amount tifne prior to the end of the
speaker's turn. Another explanation could be the occurrene of additional cuesearlier in
the speaker's turn. Note, though, that these two hypothesisare not mutually exclusive.
This chapter describes the results of preliminary studies emed at providing evidence
for these two hypothesis. First, we review the types of ovedpping speech existing in the
Games Corpus. Second, we investigate the existence of the em discussed in previous
chapters on turn- nal IPUs preceding transitions with over lapping speech. Third, we study

the durational distribution of overlapping speech segmens. Finally, we look for evidence of
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turn-yielding and backchannel-inviting cues occurring ealier in the speaker's turn.

8.1 Types of overlapping speech in the Games Corpus

The turn-taking labeling scheme presented in Chapter 5 inalides four categories of turn ex-
changes with simultaneous speech present: overlaf®(), backchannel with overlap (BC _O),
interruption ( 1) and butting-in ( Bl ). In this study we consider only the rst two classes (O
and BC _O), and ignore the last two, since they correspond to disruptons of the conver-
sational ow at arbitrary points during the speaker's turn, rather than slight, unobtrusive
overlapping speech segments. Note that the existence of avapping speech is the only dif-
ference betweernO and smooth switches §), and betweenBC _O and backchannels BC).
Instances of O can be divided in two casesfull overlaps , which take place completely
within the interlocutor's turn (as depicted in the left part of Figure 8.1); and partial
overlaps , which begin during the interlocutor's turn but extend furt her after its end (right

part of Figure 8.1). Fully and partially overlapping backch annels are de ned analogously. In

O

B: b B: —

Figure 8.1: Full and partial overlap types.

this study we consider only instances of partialO and BC _O, which are clear cases of turn
endings overlapped by new turns from the interlocutor. For ully overlapping instances, we
have no indication of the location of the speech portion thattriggers the overlapping turn,
which complicates the search for turn-taking cues. Furthemore, full overlaps correspond
to complex events in which the current speaker talks | withou t pausing | before, during
and after a complete utterance from the interlocutor. In sud occasions, it seems to be the
case that the two speakers brie yshare the conversational oor, an interesting phenomenon
that should be addressed speci cally in future research.

In the Games Corpus, 767 of the 1067 instances @, as well as 104 of the 202 tokens of
BC _O, are partially overlapping. We use only these data in the preent study. For clarity,

we refer to partially overlapping O and BC _O simply as O and BC _O.
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8.2 Existence of cues before O and BC _O

8.2.1 Turn-yielding cues preceding O

In Chapter 6 we presented a procedure to estimate the existere of seven turn-yielding cues
before smooth switches §). We begin our study of overlapping speech by searching forwe-
dence of the same cues in IPUs preceding overlap®§], and obtain the results summarized

in Table 8.1. The table on the left lists the top ten frequencies of complex cues (1. Intona-

Cues Count # Cues o
1234567 61
0 1 (0.1%)
234567 50
0,
234.67 26 1 15 (2.0%)
23456, 24 2 55  (7.2%)
..34567 24 3 111 (14.5%)
1234.67 22 4 163 (21.3%)
.3..67 22 5 213 (27.8%)
123456. 21 5 148 (10.9%)
.2.4567 20 , 1 (80
..34.67 20 (8.0%)
Total 767 (100%)

Table 8.1: Left: Top 10 frequencies of complex turn-yieldig cues for IPUs precedingO
(cf Table 6.8 on page 59). Right: Distribution of number of turn-yielding cues in IPUs
precedingO (cf Table 6.9 on page 60).

tion; 2: Speaking rate; 3: Intensity level; 4: Pitch level; 5 IPU duration; 6: Voice quality;
7: Textual completion). Similarly to what we observe for IPUs followed by S (see Table 6.8
on page 59), the most frequent cases correspond to all, or alst all, cues present at once.
The right part of Table 8.1 shows the same results, now groupig together all IPUs with
the same number of cues, independently of the cue types (seafile 6.9 on page 60). Again,
we observe a marked tendency of IPUs precedin® to present a high number of conjoined

turn-yielding cues.

These results indicate that IPUs immediately preceding smoth switches (S) and over-
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laps (O) show a similar behavior in terms of the occurrence of our pdased turn-yielding
cues. This nding is consistent with the hypothesis of an ealy detection of such cues by
listeners, allowing them to e ectively anticipate turn end ings. Further research is needed

to determine whether, and to what extent, listeners perceie and/or use these cues.

8.2.2 Backchannel-inviting cues preceding BC 0

We repeat the same analysis to study the presence of backchaeal-inviting cues | as de ned
in Chapter 7 | in IPUs preceding backchannels with overlap ( BC _O). The results are

summarized in Table 8.2, and are comparable to the results dhined for backchannels

Cues Count
123456 14 # Cues BC _.O
12.456 9 0 1 (1.0%)
.23456 8 1 3 (2.9%)
12345. 6 5 8 (7.7%)
123.56 6

3 20 (19.2%)
1..456 5
123.5. 4 4 28 (26.9%)
12.45. 4 5 30 (28.8%)
2.456 3 6 14 (13.5%)
-2.45. 3 Total 104 (100%)

Table 8.2: Left: Top 10 frequencies of complex backchannéhviting cues for IPUs
precedingBC _O (cf Table 7.5 on page 77). Right: Distribution of number of
backchannel-inviting cues in IPUs precedingBC _O (cf Table 7.6 on page 78).

without overlap (BC), shown in Tables 7.5 and 7.6 (pages 77 and 78). In both cases,
we observe that IPUs precedingBC or BC _O tend to have a high number of conjointly
displayed cues.

These results indicate that IPUs preceding backchannelsBC ) and backchannels with
overlap (BC _O) present a similar behavior in terms of the occurrence of thediscussed

backchannel-inviting cues. Again, this nding is consistent with the hypothesis of an early



CHAPTER 8. OVERLAPPING SPEECH 87

detection of these cues by listeners, allowing them to antipate the places where backchannel
responses would be welcome by their interlocutors. Future @search should investigate the

perception and usage of these cues by listeners.

8.3 Early turn-yielding cues

In this section we investigate the second hypothesized exahation for overlapping turns:
the occurrence of turn-yielding cues earlier in the currentspeaker's turn. First, we examine
the durational distribution of overlapping segments, and nd that the current turn's second-
to-last intermediate phrase is a reasonable place to seardor such cues. Subsequently, we
identify a number of early turn-yielding cues. Given the low count of backchannels with

overlap (BC _O) in the corpus, we restrict this preliminary study to overlaps (O).

8.3.1 Onset of overlaps

The annotation of turn-taking phenomena in the Games Corpusspeci es only the presence
or absence of overlapping speech (e.gQ vs. S). However, it does not provide information
about the duration of the overlapping segments, a knowledgeseful for inferring the location
of cues potentially perceived and used by listeners early eugh to anticipate turn endings.
We investigate, then, how long overlapping turns begin befee the end of the previous turns.

Figure 8.2 shows the cumulative distribution function of the duration of overlapping
speech segments in overlaps@). Around 60% of the instances have 200 ms or less of
simultaneous speech, and 10% have 500 ms or more, althoughlpm marginal number have
more than one second. If we look at lexical rather than tempoal units, we nd that 613
(80%) of all instances begin during the last word in the prevous turn; 100 (13%), during
the second-to-last word; and the remaining 54 (7%), beforetat. The mean duration of
the nal word before overlaps is 384 ms (stdev = 180 ms); and othe second-to-last word,
376 ms (stdev = 170 ms).

Finally, looking at prosodic units, we nd that over 95% of overlaps begin during the

turn- nal intermediate phrase ( ip), according to the ToBI conventions.! The mean duration

! This computation, as well as the subsequent analysis of early turn-yielding cues, considers only the
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Figure 8.2: Cumulative distribution function of the durati on of overlapping speech

segments in overlaps Q).

of the nal ip before overlaps is 747 ms (stdev = 418 ms).

These results indicate that, while in most cases the overlaping turn begins just before
the end of the previous turn, in some cases the overlapping g@ch spans up to several
words. Nonetheless, since nearly the totality of overlaps ccur during the turn- nal ip, the

second-to-lastip appears to be a plausible place to search for early turn-yieling cues.

8.3.2 Cues in second-to-last intermediate phrases

To complete this preliminary study, we search for early turn-yielding cues in the second-to-
last ips preceding overlaps Q), using a slightly modi ed version of the procedure descriked
in the previous chapters: Our current approach consists in ontrasting the second-to-lastips
before O with prior turn-internal ips (which we callH, analogously to the IPUs preceding

“hold' transitions). Any signi cant di erences found woul d suggest the existence of potential

portion of the Games Corpus that is annotated using the ToBI f ramework, which includes 538 instances of

partially-overlapping O.
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turn-yielding cues. Additionally, we examine second-to-hst ips before S, to determine
whether any such cues tend to occur in all turn endings, or whther they constitute a
device that triggers or invites overlaps.

We nd signi cant di erences ( anova , p < 0:05; Tukey 95%) in speaking rate, measured
in number of syllables and phonemes per second, over the wlaip and over its nal word,

as shown in Figure 8.3. The speaking rate of second-to-lasps beforeO is signi cantly

05
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|0

aH

-0.1 as
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-0.3
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Syllablespersecond Phonenes per |Syllablespersecond Phonenas per
second second

Intermedate Phase IP Final Word

Figure 8.3: Speaker-normalized number of syllables and pim@mes per second, computed

over the whole intermediate phrase and over its nal word.

faster than that of ips precedingH . We also nd that second-to-last ips precedingO tend
to be produced with signi cantly lower intensity, and with h igher values of three voice
quality features | jitter, shimmer and NHR (Figure 8.4). Add itionally, second-to-last ips
precedingO and second-to-lastips precedingS show no signi cant di erences with respect
to all these features.

These di erences might suggest, at rst sight, the existene of early turn-yielding cues

related to these features. However, a closer inspection reals that these results are equiv-
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Figure 8.4: Speaker-normalized mean intensity, jitter, simmer and NHR, computed over

the whole intermediate phrase.

alent to the ones discussed in Chapter 6, according to whichRUs precedingS tend to be
produced with faster speaking rate, lower intensity, and hgher jitter, shimmer and NHR
than IPUs preceding H. Often, turn- nal IPUs contain more than one ip, which would
explain the results presented in this section as a mere congaence of the ones presented in
Chapter 6 | if something is true for an entire IPU, it will like ly be true for the ips that
form it. However, 58% of IPUs precedingS and 48% of IPUs precedingO contain exactly
oneip; in those cases, second-to-lasps occur earlier than turn- nal IPUs. In consequence,
rather than the existence of distinct early turn-yielding cues, these results suggest thpro-
longation of turn- nal cues further back in the turn. In other words, th ese turn-yielding
cues apparently start to be displayed before the nal IPU, probably growing in prominence
as the turn gradually approaches its end (as indicated by théncreasing di erences observed
for intensity, jitter, shimmer and NHR towards the end of the turn; see Figures 6.3 and 6.4

on pages 43 and 53).
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8.4 Discussion

In this chapter we have presented the results of a preliminay study of overlapping speech
in conversation. We nd that IPUs preceding overlaps and smapth switches show com-
parable patterns of turn-yielding cues. Similarly, IPUs preceding backchannels with and
without overlap show comparable patterns of backchannel+iviting cues. In other words,
we nd no indication of cues inviting the listener to make a contribution | either take the
turn or produce a backchannel response | slightly overlapping the previous turn. If such
cues existed and we were able to characterize them, IVR systes could then try to avoid
producing them in their output, as a measure to prevent simutaneous speech, which poses
serious di culties for ASR systems (Shriberg et al., 2001).

Additionally, we observe that some of the turn-yielding cues described in Chapter 6
seem to originate further back in the turn, gradually increasing its prominence toward
the end of the turn. This nding opens a new direction for future research, which could
investigate turn-yielding and backchannel-inviting cuesnot as discrete events occurring at
turn endings, but as phenomena that extend over entire convesational turns, starting low
at turn beginnings and gradually increasing toward transition-relevance places. Graphical

models such as HMM and CRF might be appropriate for this task.
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Chapter 9

Conclusions and Future Work

The studies of turn-taking presented in this thesis strongl suggest the existence of seven
measurable events that take place with a signi cantly highe frequency on IPUs preceding
smooth switches (when the current speaker completes an uttance and the interlocutor
takes the turn after a short pause) than on IPUs preceding halls (when the current speaker
continues speaking after a short pause). These seven eventry act as turn-yielding cues,
such that when several cues occur simultaneously, the likdlood of a subsequent turn-
taking attempt by the interlocutor increases in a close to linear manner. Additionally, we
have presented similar evidence of the existence of six badkannel-inviting cues such that,
when they take place simultaneously, the likelihood of occtrence of a backchannel from the
interlocutor increases in a quadratic fashion.

These ndings could be used to improve several turn-taking @cisions of state-of-the-art
IVR systems, such as how to keep the oor, either preventing interruptions from the user or
inviting the user to produce backchannel responses; how toigld the oor to the user; when
to take the oor from the user; and when to produce backchannéresponses to encourage the
user to continue speaking. An improvement in the turn-taking capabilities of IVR systems
should lead to a more natural and e cient human-computer int eraction.

There are several possible directions for future research.The rst is to experiment
with novel turn-yielding and backchannel-inviting cues. For example, voice quality seems
to be a promising source to look for new cues, given the good selts obtained with jitter,

shimmer and noise-to-harmonics ratio. Furthermore, thesehree features could be used as
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ner grained turn-yielding cues, rather than a single voice-quality cue as in our approach.

A second direction consists in modifying the model of compbe cues adopted in this study,
which implicitly assumes that all cues are equally importan, contributing with either 0 or
1 to the total count. Future research should explore the asginment of numeric weights to

the di erent cues, in order to account for their relative imp ortance.

Third, there seems to be some margin for improvement in the tak of automatic clas-
si cation of textual completion. Our best performing classi er, based on support vector
machines, achieves an accuracy of 80%, while the agreememrfhumans is 90.8%. New
approaches could incorporate features capturing informabn from the previous turn by the
other speaker, which was available to the human labelers buhot to the machine learning
classi ers. Also, the sequential nature of this classi caion task might be better exploited
by more advanced graphical learning algorithms, such as Hiden Markov Models and Con-

ditional Random Fields.

Future research could also investigate turn-yielding and lackchannel-inviting cues, not
as discrete events occurring in the nal portion of conversgional turns, but as phenomena
that extend over entire turns, gradually increasing as turns approach potential transition-

relevance places.

Another research direction consists in running a perceptia study to learn more about
the detection of cues by human listeners. For example, in a Wiard-of-Oz setting subjects
could be asked to respond as soon as possible to the interviers prompts, but without
breaking the conversational ow. Through controlled manipulation of output parameters, it
should be possible to assess the relative perceptual impamce of individual and combined

cues, as well as the subjects' ability to perceive them prioto the turn boundary.

Users of IVR systems sometimes engage in an uninterrupted w of speech which the
system might want to interrupt, either because it has already collected the information
needed for the task at hand, or simply because it has lost trdc of what the user is saying
and needs to start over. In such occasions, it is crucial fortie system to interrupt in an
acceptable manner. Modeling the way in which people interrpt in spontaneous, collabora-
tive conversations should aid IVR systems in this aspect of irn-taking. Since our labeling

scheme distinguishes three types of interruptions (simplgpause, and barge-in interruptions)
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another direction for future research would be characteriing interruptions, both identifying
places where interruptions are more likely to occur, and als describing the acoustic and
prosodic properties of the interrupter's speech.

Lastly, we nd strong indications in the Games Corpus that a rmative cue words,
such asokay or alright, play a central role in the organization of turn-taking in ta sk-
oriented dialogue. These words are heavily overloaded, uddo convey acknowledgment, to
backchannel, and to begin or end discourse segments, amonther functions. Therefore, we
devote Part Il of this thesis to study the realization of ar mative cue words in the Games

Corpus.
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Chapter 10

Motivation and Research Goals

Cue phrases are linguistic expressions that may be used to convey explicinformation
about the discourse or dialogue, or to convey a more literalsemantic contribution. They aid
speakers and writers in organizing the discourse, and listeers and readers in processing it.
These constructions have received several names in the liure, such as discourse markers,
pragmatic connectives, discourse operators, and clue wosd Examples of cue phrases include
now, well, so, and, but, then, after all, furthermore, howeer, in consequence, as a matter
of fact, in fact, actually, okay, alright, for example, incidentally, and countless others.

The ability to correctly determine the function of cue phrases is critical for important
natural language processing tasks, including anaphora regution (Grosz and Sidner, 1986),
argument understanding (Cohen, 1984), plan recognition (litman and Allen, 1987; Grosz
and Sidner, 1986), and discourse segmentation (Litman and &sonneau, 1995). Further-
more, correctly determining the function of cue phrases usig features of the surrounding
text can be used to improve the naturalness of synthetic spesh in text-to-speech systems
(Hirschberg, 1990).

In the studies presented in Part Il of this thesis, we focus m a subclass of cue phrases
that we term affirmative cue words (hereafter, ACWs), and that include alright,
mm-hm, okay, right, and uh-huh, inter alia. These words are very frequent in sponta-
neous conversation, especially in task-oriented dialogueAs we have seen in the description
of the Games Corpus, ACWSs account for almost eight percent ofll words in the corpus.

Also, these words appear to be heavily overloaded. Some of ¢ém (e.g., alright, okay) are
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capable of conveying as many as ten di erent discourse/pramatic functions.

ACWs are strongly connected to turn-taking in conversation along various dimensions.
First, they are the most natural choice for backchannel respnses | in the Games Corpus,
all backchannels are instances of ACWSs. Second, they may fation as explicit turn-yielding
cues, as in\right?" or \okay?" at the end of a sentence. And third, ACWs may also be
used to initiate a new conversational turn. Therefore, it is crucial for IVR systems to
distinguish correctly between the several discourse/pramatic functions of ACWSs, both for
speech generation and speech understanding tasks. In pattilar, a better understanding of
the characteristics of backchannels would help us answer #ghfollowing two questions posed

in the introduction of Part Il that we have not addressed yet:

Q4. The user has produced a short segment of speech; how canetlsystem tell whether

that was a backchannel or an attempt to take the turn?

Q7. The user is speaking and the system wants to produce a bagkannel response; how

should it formulate its output for the backchannel to be interpreted correctly?

Part Il of this thesis describes a series of studies aimed atdvancing our understanding
of ACWs. We seek descriptions of the acoustic/prosodic chacteristics of their functions,
a knowledge helpful in spoken language generation tasks. Aditionally, we assess the pre-
dictive power of computational methods for their automatic disambiguation, a capability
useful for various spoken language understanding tasks. Is#ly, we investigate speaker en-
trainment | or, how conversational partners tend to adapt th eir speech to each other's
behavior | related to the usage of high-frequency words, including ACWSs, and explore its

connection to task success and dialogue coordination.
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Chapter 11

Previous Work on Cue Phrases

Cue phrases have received extensive attention in the Compational Linguistics literature.
Early work by Cohen (1984) presents a computational justi cation for the usefulness and the
necessity of cue phrases in discourse processing. Using aple propositional framework
for analyzing discourse, the author claims that in some case cue phrases decrease the
number of operations required by the listener to process \cherent transmissions”; in other
cases, cue phrases are necessary to allow the recognition \tinsmissions which would
be incoherent (too complex to reconstruct) in the absence otlues” [p. 251]. Additionally,
Cohen introduces a taxonomy of cue phrases consisting of sigategories of connectives:
parallel (e.g., in addition), inference (herefore), detail (in particular ), summary (in sum),
and reformulation (in other words).

Reichman (1985) proposes a model of discourse structure inhich discourse comprises a
collection of basic constituents calledcontext spaces , organized hierarchically according
to various kinds of semantic and logical relations calledconversational moves . In such
a model, cue phrases are portrayed as mechanisms that signaebntext space boundaries,
specifying the kind of conversational move about to take plae. Reichman identi es eleven
types of conversational moves, and provides a list of exampl cue phrases for each. For
instance, expressions such abecauseand like function as support conversational moves,
which introduce new elements supporting previous argumerst; and expressions such as
incidentally and by the way function as interruption moves, which introduce a sudden

topic change.
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Grosz and Sidner (1986) introduce an alternative model of dicourse structure formed
by three interrelated components: alinguistic structure , Which de nes a hierarchy of
discourse segments, amtentional structure , Which comprises the discourse intentions
that organize the discourse segments, and aattentional state , which models the at-
tention as a stack of focus spaces. In such a model, cue phragglay a central role, allowing
the speaker to provide information about all of the following to the listener: \1) that a
change of attention is imminent; 2) whether the change retuns to a previous focus space or
creates a new one; 3) how the intention is related to other inéntions; 4) what precedence
relationships, if any, are relevant” [p. 196]. For example,expressions such asor example
and moreover push a new focus space onto the attentional stack, and creata new discourse
segment subordinated to the current one; expressions suclsa@anyway and in any case pop

the existing space from the stack, and return to a previous dicourse segment.

Subsequent studies propose a formal de nition of cue phrase For example, a corpus
study of spontaneous conversations by Schi rin (1987) desibes cue phrases as syntactically
detachable from a sentence, commonly used in initial positin within utterances, capable
of operating at both local and global levels of discourse, ah having a range of prosodic
contours. Schirin observes, like previous studies, that we phrases provide contextual
coordinates for an utterance in the discourse, but suggestsonetheless that cue phrases only
display the discourse structure relations, rather than create them Later on, in a critique
of Schirin's work, Redeker (1991) proposes de ning cue phases as phrases \uttered with
the primary function of bringing to the listener's attentio n a particular kind of linkage of
the upcoming utterance with the immediate discourse contek' [p. 1169]. A detailed review

of these and other related works can be found in Fraser (1999)

Prior work on the automatic classi cation of cue phrases indudes a series of studies
performed by Hirschberg and Litman (Hirschberg and Litman, 1987; 1993; Litman and
Hirschberg, 1990), which focus on di erentiating between te discourse and sentential
senses of single-word cue phrases such msw, well, okay, say, and so. When used in
a discourse sense, a cue phrase explicitly conveys structlrinformation; when used in a
sentential sense, a cue phrase instead conveys semantic mat than structural information.

Hirschberg and Litman present two manually developed classcation models, one based on
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prosodic features, and one based on textual features. In therosodic model, when a cue
phrase is uttered as a single intermediate phrase, or in a lger intermediate phrase with an
initial position and a L* accent or deaccented, it is classi ed as “discourse'; otherwise, as
“sentential’. In the textual model, when a cue phrase is preeded by any punctuation or by a
paragraph boundary (as speci ed in manual transcriptions d the recordings), it is classi ed
as “discourse'; otherwise, as “sentential’. An evaluatiof both models on a single-speaker
keynote address in SAE reports an error rate of 24.6% for the ywsodic model, or 14.7%
when excluding all instances of conjunctsand, or, and but | for which classi cation into
discourse and sentential senses by human annotators is reged to be highly unreliable. The
error rate of the textual model is 19.9% in general, and 16.1%after removing conjuncts.
These results signi cantly improve over the majority-class (‘sentential’) baselines, whose

error rates are 38.8% and 40.8%, respectively.

This line of research is further pursued by Litman (1994; 198), who incorporates ma-
chine learning techniques to derive classi cation models atomatically. Litman extracts a
number of prosodic features (e.g., accent type, length of tonational phrase) and textual
features (e.g., part-of-speech tags, preceding punctuain symbol or paragraph boundary),
and uses them to train decision-tree and rule learners on thesame data from the previous
studies, experimenting with di erent combinations of features. Litman then compares the
performance of automatically and manually learned models ging all prosodic features, all
textual features, and all features combined, as summarizedh Table 11.1. The automatic
models outperform the manual models for all single-word cug@hrases; when conjuncts are

excluded, however, all models reach comparable error ratesin all, these studies show

Model All cue phrases| Non-conjuncts
Manual prosodic 24.6% 14.7%
Manual textual 19.9% 16.1%
Automatic prosodic 15.5% 17.2%
Automatic textual 18.8% 19.0%
Automatic prosodic+textual 15.9% 14.6%

Table 11.1: Error rates of manual and automatic classi ers Citman, 1996).
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that machine learning constitutes a powerful tool for devebping automatic classi ers of cue

phrases into their sentential and discourse uses.

Zu erey and Popescu-Belis (2004) present a similar study orthe automatic classi cation
of like and well into their discourse and sentential senses, achieving a p@rmance close
to that of human annotators. More recently, Lai (2008) discusses a characterization of
prosodic cues for distinguishing two possible uses of the wa really, as a question or as a

backchannel.

Despite their high frequency in spontaneous conversationa rmative cue words have
been little studied as a separate subclass of cue phrases. Aegxception is a study by
Hockey (1991; 1992) on the prosodic variation of tokens obkay and uh-huh produced as
full intonational phrases in two spontaneous task-orient@ dialogues. Hockey groups the
Fo contours visually and auditorily, \using characteristics such as relative iy height of the
rst and second syllables and general shapes of the two sylldes (e.qg. rise, fall, level, degree
of rise or fall)" [p. 129]. This clustering procedure divides the intonational contours into
three groups, described impressionistically by the author which roughly match the ToBI
contours H* H-L% (plateau), H+!H* L-L% (downstep), and H* H- H% (high-rise). The
only result described by the author showing statistical sigii cance is that tokens of okay
produced with a high-rise contour are more likely to be follaved by speech from the other
speaker than from the same speaker, which could be the case ether a backchannel or a

turn change.

In a study of the function of intonation in British English ta sk-oriented dialogue,
Kowtko (1997) examines single-word utterances, includinga rmative cue words such as
mm-hm, okay, right, uh-huh and yes She nds a signi cant correlation between discourse
function and intonational contour. For example, the align function, which checks that the
listener's understanding aligns with that of the speaker, 5 shown to correlate with rising
intonational contours; the ready function, which cues the speaker's intention to begin a
new task, correlates with non-rising intonation; and the acknowledge function, which

indicates having heard and understood, presents overall aan-falling intonation.

As part of a larger project on automatically detecting discourse structure for speech

recognition and understanding tasks, Jurafsky et al. (1998 present a study of four particu-
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lar discourse/pragmatic functions, or dialog acts  (Stolcke et al., 2000), closely related to
ACWSs: continuer (short utterance indicating that the other speaker should ¢o on talking),
incipient speakership  (indicating an intention to take the oor), agreement (indicat-
ing the speaker's agreement with a statement or opinion expessed by another speaker),
and yes-answer (armative answer to a yes-no question).! The authors examine 1155
conversations from the Switchboard database (Godfrey et aJ 1992), and report that the
vast majority of these four dialog acts are realized with wods like yeah okay, or uh-huh
They nd that the lexical realization of the dialog act is the strongest cue to its identity.
For example, uh-huh is used as a continuer twice as often ageah while yeah is used to
take the oor (incipient speakership) three times as often & uh-huh They also report
preliminary results on a few prosodic di erences across diag acts. Continuers tend to be
shorter in duration, with a atter contour, and lower in F ¢ and intensity than agreements.
When continuers end in rising intonation, however, they canbe longer, and higher in iy and
intensity. Also, falling intonation tends to be associated with agreements more often than
with continuers. Interestingly, they report that some speakers tend to use a characteristic
prosody on a particular lexical item to distinguish its continuer and agreement uses, while

others seem to use one lexical item exclusively for continue and another for agreements.

1 In this thesis we refer to continuers as backchannels, a term that Jurafsky et al. (1998) use in a broader
sense, to include the continuer, incipient-speakership and agreement dialog acts, among others. In the coding
scheme presented in Chapter 5, incipient-speakership coresponds roughly to the cue beginning functions,

CBeg and PBeg ; and agreement and yes-answer are collapsed into a single @lss, Ack .
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Chapter 12

ACWs in the Games Corpus

The materials for the studies of ACWSs presented in this thess were again taken from the
Games Corpus. In total, this corpus has 5456 instances of a mative cue words alright,
gotcha huh, mm-hm, okay, right, uh-huh, yeah yep yes and yup, which were labeled by
three annotators into the ten di erent discourse/pragmati ¢ functions listed in Table 12.1.
Labelers were given examples of each category, and labeleding both transcripts and speech
together. The complete guidelines used by the annotators a presented in Appendix C.
Inter-labeler reliability was measured by Fleiss' (Fleiss, 1971) as “substantial' at 0.69. We
de ne the majority label of a token as the label chosen for that token by at least two
of the three labelers; we assign the "?' label to a token eitlrewhen its majority label is
*?', or when it was assigned a di erent label by each labeler.Of the 5456 a rmative cue
words in the corpus, 5185 (95%) have a majority label. Table 2.2 shows the distribution
of discourse/pragmatic functions over ACWs in the whole copus.

Throughout the Games Corpus, there are 8139 conversationdlrns.® Of the 2480 turns
containing just one word, 2015 (81.2%) consist of an ACW. Of he 5659 turns containing
more than one word, 1520 (26.9%) begin with an ACW, and 780 (18%) end with one.
These numbers show clearly the central role that ACWSs play inturn-taking in task-oriented

conversations. The wide range of discourse/pragmatic meangs associated with ACWs

! Recall from Chapter 2 that we dene a turn as a maximal sequence of IPUs from one speaker, such
that between any two adjacent IPUs there is no speech from the interlocutor. An inter-pausal unit (IPU)

is de ned as a maximal sequence of words surrounded by silene longer than 50 ms.
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Ack | Acknowledgment/agreement. Indicates \I believe what you said", and/or

\I agree with what you say".

BC | Backchannel. Indicates only \l hear you and please continue”, in response to

another speaker's utterance.

CBeg | Cue beginning discourse segment. Marks a new segment of a discourse or

a new topic.

CEnd | Cue ending discourse segment. Marks the end of a current segment of a

discourse or a current topic.

PBeg | Pivot beginning (Ack+CBeg). Functions both to acknowledge/agree and to

cue a beginning segment.

PEnd | Pivot ending (Ack+CEnd). Functions both to acknowledge/agree and to cue

the end of the current segment.

Mod | Literal modi er. Example: \I think that's okay" .

BTsk | Back from a task. Indicates\I've just nished what | was doing and I'm back" .

Chk | Check. Used with the meaning\ls that okay?"

Stl | Stall. Used to stall for time while keeping the oor.

? Cannot decide.

Table 12.1: Labeled discourse/pragmatic functions of a rmative cue words.

make this class of cue phrases a powerful tool for speakers twordinate the development

of tasks requiring a high degree of collaboration.

12.1 Data downsampling

Table 12.2 shows the complete distribution of ACWs and discarse/pragmatic functions in
the corpus. Some of the word/function pairs in that table are skewed to contributions from
a few speakers. For example, for backchanneBC ) uh-huh, as many as 65 instances (44%)
are from one single speaker, and the remaining 83 are from s&v other speakers. In cases
like this, using the whole sample would pose the risk of drawig false conclusions on the

usage of ACWs, possibly in uenced by stylistic properties @ individual speakers.
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alright | mm-hm | okay | right | uh-huh | yeah | Rest | Total
Ack 76 58| 1092| 111 18| 754 | 116| 2225
BC 6 395| 120 14 148 69 5 757
CBeg 83 0| 543 2 0 2 0 630
CEnd 6 0 6 0 0 0 0 12
PBeg 4 0 65 0 0 0 0 69
PEnd 11 12| 218 2 0 20 15 278
Mod 5 0 18 | 1069 0 0 0| 1092
BTsk 7 1 32 0 0 0 0 40
Chk 1 0 6 49 0 1 6 63
Stl 1 0 15 1 0 2 0 19
? 36 12| 150 10 3 55 5 271
Total 236 478 | 2265| 1258 169 | 903 | 147 | 5456

Table 12.2: Distribution of function over ACW. Rest = fgotcha, huh, yep, yes, yug

Therefore, we downsample the tokens of ACWs in the Games Cors to obtain a bal-
anced data set, with instances of each word and function comqg in similar proportions from
as many speakers as possible. We discard tokens of ACWs untivo conditions are met:
for each word/function pair, (a) tokens come from at least faur di erent speakers, and (b)
no single subject contributes more than 25% of the tokens. Th two thresholds were found
via a grid search, and were chosen as a trade-o0 between sizéd representativeness of the
data set.

This procedure leads to discarding 506 tokens of ACWSs, or 9% of such words in the
corpus. Table 12.3 shows the resulting distribution of disourse/pragmatic functions over

ACWs in the whole corpus after downsampling the data.

12.2 Feature extraction

We extract a number of lexical, discourse, timing, phoneti¢ acoustic and prosodic features

for each target ACW, which we use in the statistical analysis machine learning experiments
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alright | mm-hm | okay | right | uh-huh | yeah | Rest | Total
Ack 76 58 | 1092 74 16| 754 87| 2157
BC 0 395| 120 0 101 58 0 674
CBeg 61 0| 543 0 0 0 0 604
CEnd 0 0 4 0 0 0 0 4
PBeg 0 0 64 0 0 0 0 64
PEnd 10 4| 218 0 0 18 0 250
Mod 4 0 18 | 1069 0 0 0| 1091
BTsk 5 0 28 0 0 0 0 33
Chk 0 0 5 49 0 0 4 58
Stl 0 0 15 0 0 0 0 15
Total 156 457 | 2107 | 1192 117 | 830 91| 4950

Table 12.3: Distribution of function over ACW, after downsampling.

Rest = fgotcha, huh, yep, yes, yug

and perception studies presented in the following chaptersTables 12.5 and 12.6 summarize
the full feature set. Some considerations regarding the proess of feature extraction, such as
the part-of-speech tagger or the method for calculating pith slopes, are given in the corpus
description in Part | of this thesis.

Boundaries of IPUs and turns are computed automatically fran the time-aligned tran-
scriptions. A task in the Cards Games corresponds to matching a card, and in the Bjects
Games to placing an object in its correct position. Task bourdaries are extracted from the
logs collected automatically during the sessions, and latechecked by hand.

For the phonetic features, we train an automatic phone recogizer based on the Hidden
Markov Model Toolkit (HTK; Young et al., 2006), using three c orpora as training data: the
TIMIT Acoustic-Phonetic Continuous Speech Corpus (Garofdo et al.,, 1993), the Boston
Directions Corpus (Hirschberg and Nakatani, 1996), and theColumbia Games Corpus.
With this, we obtain automatic time-aligned phonetic trans criptions of each instance of
ACWs in the Columbia Games Corpus. For improved accuracy, weestrict the recognizer's

grammar to accept only the most frequent variations of each wrd, as shown in Table 12.4.
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We extract our phonetic features, such as phone and syllabldurations, from the resulting

ACW | ARPAbet Grammar

alright | (aalaolax) r (ay|eh) [t]
mm-hm | m hh m
okay | [aalaolax|m|ow] k (ax|eh|ey)
right | r (ayleh) [t]
uh-huh | (aalax) hh (aalax)

yeah | y (aaJaelahlax|ealeh)

Table 12.4: Restricted grammars for the automatic speech mognizer. Phones in square

brackets are optional.

time-aligned phonetic transcriptions.

Prosodic features include the ToBI labels as specied by theannotators, and also a
simpli ed version of the labels, considering only high and bw pitch targets (i.e. H* vs. L*
for pitch accents, H- vs. L- for phrase accents, and H% vs. L%0dr boundary tones), and
simpli ed break indices (0-4) without diacritics such as “p' or "-'.

Additionally, we categorize the features according to the mrtion of signal from which
they were extracted: word-only  (marked W in Tables 12.5 and 12.6), from just the target
word itself; backward-looking (B), from up to the IPU containing the target word; and
all (A), from the entire conversation. We create this taxonomy forthe machine learning
experiments described in Chapter 14, in which we assess, amg other things, the usefulness
of information extracted from each of the three sources, simlating the conditions of actual
online and o ine applications.

In the following chapters, we use the features described herin several ways. First,
we perform a series of statistical tests to nd di erences inthe production of the function
of ACWs. Second, we experiment with machine learning techmjues for the automatic
classi cation of the function of ACWSs, training the models with di erent combinations of
features. Finally, we investigate the relative importance of contextual features in human

disambiguation of ACWs.
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Lexical features
WBA | Lexical identity of the target word ( w).
WBA | Part-of-speech tag ofw, original and simpli ed.
BA | Words immediately preceding and followingw, and their original and simpli ed
POS tags.
Discourse features

BA | Number of words inw's IPU.

BA | Number and proportion of words in w's IPU before and after w.

BA | Number of words uttered by the other speaker duringw's IPU.

BA | Number of words in the previous turn by the other speaker.

Number of words inw's turn.

Number and proportion of words and IPUs in w's turn before and after w.
Number and proportion of turns in w's task before and afterw.

Number of words uttered by the other speaker duringw's turn.

Number of words in the following turn by the other speaker.

> > > > >

>

Number of ACWSs in w's turn other than w.

Timing features
WBA | Duration (in ms) of w (raw, normalized with respect to all occurrences of the same
word by the same speaker, and normalized with respect to all erds with the same
number of syllables and phonemes uttered by the same speaBer

BA | Flag indicating whether there was any overlapping speech im the other speaker.
BA | Duration of w's IPU.

BA | Latency (in ms) betweenw's turn and the previous turn by the other speaker.

BA | Duration of the silence beforew (or O if the w is not preceded by silence), its IPU,
and its turn.

BA | Duration and proportion of w's IPU elapsed before and afterw.

BA | Duration of w's turn before w.

BA | Duration of any overlapping speech from the other speaker ding w's IPU.

BA | Duration of the previous turn by the other speaker.

Duration of the silence after w (or O if w is not followed by silence), its IPU, and
its turn.

>

Latency betweenw's turn and the following turn by the other speaker.
Duration of w's turn, as a whole and afterw.

Duration of any overlapping speech from the other speaker diing w's turn.
Duration of the following turn by the other speaker.

> > > >

Table 12.5: Feature set.Continued in Table 12.6.
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Acoustic features

WBA | w's mean, maximum, minimum pitch and intensity (raw and speaker normalized).
WBA | w's ratio of voiced frames to total frames (raw and speaker namalized).

WBA | Jitter and shimmer, computed over the whole word and over the rst and second
syllables, computed over just the voiced frames (raw and spker normalized).
WBA | Noise-to-harmonics ratio (NHR), computed over the whole wad and over the rst
and second syllables (raw and speaker normalized).

WBA | Pitch slope, intensity slope, and stylized pitch slope, corputed over the whole word,
its rst and second halves, its rst and second syllables, the rst and second halves
of each syllable, and the word's nal 100, 200 and 300 ms (rawrad normalized with
respect to all other occurrences of the same word by the sam@saker).

BA | w's mean, maximum, minimum pitch and intensity, normalized with respect to three
types of context: w's IPU, w's immediately preceding word by the same speaker
and w's immediately following word by the same speaker.

BA | Voiced-frames ratio, jitter and shimmer, normalized with respect to the same three
types of context.

BA | Mean, maximum, minimum pitch and intensity, ratio of voiced frames, (all raw and
speaker normalized), jitter and shimmer, calculated over he nal 500, 1000, 1500
and 2000 ms of the previous turn by the other speaker (only dened whenw is turn
initial but not task initial).

BA | Pitch slope, intensity slope, and stylized pitch slope, catulated over the nal 100,
200, 300, 500, 1000, 1500 and 2000 ms of the previous turn byetother speaker
(only de ned when w is turn initial but not task initial).

Phonetic features

WBA | Identity of each of w's phones.
WBA | Absolute and relative duration of each phone.
WBA | Absolute and relative duration of each syllable.

Session-speci ¢ features

{ Session number.
{ Identity and gender of both speakers.
ToBI prosodic features
{ Pitch accent, phrase accent, boundary tone and break index m w (original and
simpli ed ToBI labels).
{ Pitch accent, phrase accent, boundary tone and break indexmthe nal intonational

phrase of the previous turn by the other speaker (original al simpli ed ToBl labels;

only de ned when w is turn initial).

Table 12.6: Feature set.Continued from Table 12.5.
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Chapter 13

Descriptive Statistics

In this chapter we present results of a series of statisticatests aimed at identifying contex-
tual, acoustic and prosodic di erences in the production ofthe various discourse/pragmatic
functions of a rmative cue words. To look for such dierences, for each numeric fea-
ture we conduct a repeated-measures analysis of variancenfanova ) test, considering the
data from all speakers together. In most cases, the low counbf word/function pairs for
individual speakers impedes assessing those di erences feach speaker separately. There-
fore, instead of regularanova , we usermanova tests, which estimate the existence of
both within-subjects e ects (i.e. di erences between dismurse/pragmatic functions) and
between-subjects e ects (i.e. di erences between speaks). When the between-subjects ef-
fects are negligible, we may safely draw conclusions acrosaultiple speakers in the corpus,

with low risk of a bias from the behavior of a particular subse of speakers.

13.1 Context

We begin this analysis by looking at the discourse context othe various discourse/pragmatic
functions of ACWs. Since these words help shape, or at leasterect, the structure of
conversations, we expect to nd contextual di erences between their functions. Figure 13.1
shows the distribution of the six most frequent ACWSs in the carpus (alright, okay, yeah

mm-hm, uh-huh and right) with respect to their position in the corresponding IPU.1 An

! See Table F.2 in Appendix F for the actual numbers corresponding to this gure.
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ipu-initial  word is one that occurs in the rst position in its corresponding IPU; i.e., it
is preceded by at least 50 milliseconds of silence and folled by another word. An ipu-
final word occurs last in its IPU. An ipu-medial word is both immediately preceded and
followed by other words. Lastly, a single-word IPU is an individual word both preceded
and followed by silence. Figure 13.1 also depicts the distbiution of discourse/pragmatic
functions within each of these four categories. For exampleroughly 40% of all tokens of
alright in the corpus occur as IPU initial; of those, about half are aknowledgments (Ack ),
half are cues to beginning discourse segment€Beg ), and a marginal number convey other

functions.

Figure 13.1: Position of the target word in its IPU.

Similarly, Figure 13.2 shows the distribution of the same sx ACWs with respect to
their position in the corresponding conversational turn2 Turn-initial  , turn-medial ~ and
turn-final  words, andsingle-word  turns are de ned analogously to the four IPU-related
categories de ned above, but considering conversationalurns instead of word IPUs.

From these gures we observe several interesting aspects dhe discourse context of
ACWs in the Games Corpus. Only a minority of these words occuras IPU medial or IPU
nal. The only exception appears to be right, for which a high proportion of instances do
occur in such positions: mainly tokens with the literal modi er ( Mod ) meaning, but also
tokens used to check with the interlocutor (Chk ), which take place at the end of a turn
(and thus, of an IPU).

The default function of ACWSs, acknowledgment/agreement (Ack ), occurs for alright,

okay, yeah and right in all possible positions within the IPU and the turn; for mm-hm and

2 See Table F.3 in Appendix F.
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Figure 13.2: Position of the target word in its turn

uh-huh, acknowledgments occur mostly as full conversational turs. Nearly all backchan-

nels BC) occur as separate turns, with only a handful of exceptions:In four cases, the

backchannel is followed by a pause in which the interlocutorchooses not to continue speak-
ing, and the utterer of the backchannel takes the turn; in other two cases, two backchannels
are uttered in fast repetition (e.g., \uh-huh uh-huh").

In all, these preliminary results con rm the existence of large contextual di erences
between the discourse/pragmatic functions of ACWs, and als between their lexical types.
We will revisit this topic twice in this thesis. In Chapter 14 we discuss the predictive power
of contextual features in the automatic classi cation of the function of ACWs. Given the
observed contextual di erences, we expect these featureotplay a prominent role in such a
task. Subsequently, in Chapter 15 we investigate the imporance of contextual information
in human perception of the function of ACWs. In particular, w e study the extent to which

the disambiguation process is a ected by the complete lack bcontextual information.

13.2 Word- nal intonation

Shifting our attention to acoustic/prosodic characteristics of ACWs, we examine next the
manner in which word- nal intonation varies across ACW functions. First we look at
two categorical variables in the ToBI framework which capture the nal pitch incursion:
phrase accent and boundary tone. Figure 13.3 shows the disbution of ToBI labels for

each of the six most frequent ACWs and their corresponding factions.® The distributions

% See Table F.1 in Appendix F for the actual numbers corresponding to this gure.
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Figure 13.3: ToBI phrase accents and boundary tones. The “ber' category consists of

cases with no phrase accent and/or boundary tone present athe target word.

for alright, okay, right and yeah depart signi cantly from random ( alright: Fisher's Exact
test, p = 0:0483; okay: Pearson's Chi-squared test, 2(24) = 261, p  O; right: Pearson,

2(8) =220, p 0;yeah: Fisher,p 0). For right, considering just its discourse/pragmatic
functions (i.e., excluding its Mod instances), the distribution also signi cantly di ers fro m
random (Fisher, p  0). On the other hand, the distributions for mm-hm and uh-huh do
not depart signi cantly from random.

The rst clear pattern we nd is that the backchannel functio n (BC) shows a marked
preference for a high-rising (H-H% in the ToBl conventions) or low-rising (L-H%) pitch
contour towards the end of the word. Those two contours accont for more than 60% of
the backchannel instances oimm-hm, okay, uh-huh and yeah For the other ACWs there
are not enough instances labele®C in the corpus for statistical comparison.

The default function of ACWSs, acknowledgment/agreement (Ack ) is produced most
often with falling (L-L%) or plateau nal intonation ([']H- L%) in the case ofalright, okay,
right and yeah Notably, Ack instances ofmm-hm and uh-huh present a very dierent

behavior, with a distribution of nal intonations that clos ely resembles that of backchannels.
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In particular, over 60% of the tokens ofmm-hm and uh-huh are produced with a nal rising
intonation (either L-H% or H-H%).

Alright and okay are the only two ACWs in the corpus that are used to cue the begining
of a new discourse segment, either combined with an acknowdgment function (PBeg ) or
in its pure form (CBeg ). These two functions typically have a falling (L-L%) or sustained
(['H-L%) nal pitch contour. Additionally, the instances of okay and yeah used to cue a
discourse segment endingREnd ) tend to be produced with a L-L% contour, and also with
['IH-L% in the case ofokay.

The only ACW used frequently in the corpus for checking with the interlocutor (the

Chk function), is right, as illustrated in the following exchange:

A: and the top's not either, right?
B: no

A: okay

Such instances ofright in the corpus normally end in a high-rising pitch contour, or H-H%.
This fact is probably explained by the close semantic reseniance of this construction to yes-
no questions, which typically end in the same contour type (Pigrehumbert and Hirschberg,
1990).

In addition to the categorical prosodic variables describd above, word nal intonation
may also be studied by exploring the slope of the word- nal ptch track. Figure 13.4 shows,
for the same ACWs and functions discussed abovéthe mean pitch slope computed over the
second half of the word and over its nal 100 and 200 millisecnds, and gender-normalized
as described in Section 2.2.

The comparison of these numeric acoustic features acrossstdiourse/pragmatic functions
provides additional support for the observations made aboe. For okay, the three measures
of word- nal pitch slope are signi cantly higher for backch annels BC ) than for all other
functions, and signi cantly lower for CBeg than for Ack , BC and PEnd (rmanova for

each of the three variables: between-subjectp > 0:3, within subjects p  0; Tukey test

4 For PEnd instances of yeah and Ack instances of uh-huh, the number of tokens with no errors in the

pitch track and pitch slope computations is too low for stati stical consideration.
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Signi cant di erences: For okay: BC> all; CBeg< Ack, BC, PEnd.
For right: Chk> Ack. For yeah: BC> Ack.

Figure 13.4: Final pitch slope, computed over the second héland the nal 100 and

200 milliseconds of the target word.

con dence: 95%). BC tokens of yeah are also signi cantly higher than Ack , with similar
p-values. Figure 13.4 shows thaBC instances ofmm-hm and uh-huh also have comparably
high nal pitch slopes. Again, for mm-hm we nd no signi cant di erence in nal pitch

slope between acknowledgments and backchannels.

Although Figure 13.4 shows that Chk tokens ofright tend to end in a very high pitch
slope, thermanova tests yield between-subjectsp-values of 0.01 or lower, indicating sub-
stantial speaker e ects. In other words, even though the geeral tendency for these tokens,
as indicated by both the numeric and categorical variables,seems to be to end in a high-
rising intonation, there is evidence of di erent behavior for some individual speakers, which

keeps us from drawing general conclusions about this pragntia function of right.
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13.3 Intensity

The next feature we nd to vary signi cantly with the discour se/pragmatic function of
ACWs is word intensity. Figure 13.5 shows the maximum and mea intensity for the most
frequent ACWs and functions, computed over the whole word ad speaker normalized using

Z-SCcores.
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Signi cant di erences: For alright: Ack< CBeg. For yeah: PEnd< Ack, BC.
For okay: PEnd<all; Ack<CBeg, PBeg, BC; BC< CBeg.

Figure 13.5: Word maximum and mean intensity.

The two types of di erences we nd are related to the discourse functions of ACWs.
For okay and yeah both maximum and mean intensity are signi cantly lower for instances
cueing the end of a discourse segmentPEnd ) than instances of all other functions (for
both variables and both words,rmanova tests report between-subjectgp > 0:4 and within-
subjectsp 0; Tukey 95%). For ACWSs cueing a beginning discourse segmenthe opposite
is true. Instances ofalright and okay labeled CBeg or PBeg have a maximum and mean

intensity signi cantly higher than all other functions (fo r alright, a rmanova test reports
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between-subjectsp > 0:12 and within-subjects p  0). These results are consistent with
previous studies of prosodic variation relative to discouse structure, which nd intensity to
increase at the start of a new topic and decrease at the end (Bwn et al., 1980; Hirschberg
and Nakatani, 1996). Since by de nition CBeg/PBeg ACWSs begin a new topic and
CEnd / PEnd end one, it is then expectable to nd that the former tend to be produced
with higher intensity, and the latter with lower.

Finally, for mm-hm and uh-huh we nd no signi cant di erences in intensity between
their two only functions, acknowledgment (Ack ) and backchannel BC ). Recall from the
previous section that we nd no dierences in nal intonatio n either. This contributes
to the hypothesis that these two lexical types tend to be prodiced with indistinguishable

acoustic/prosodic features, independently of their funcion.

13.4 Other features

For the remaining acoustic/prosodic features described inChapter 12 we nd only a small
number of signi cant di erences between the functions of ACWSs, related to duration, mean
pitch and voice quality.

The rst set of ndings corresponds to the duration of ACWSs, normalized with respect
to all words with the same number of syllables and phonemes t¢red by the same speaker.
For alright and okay, instances cueing a beginning ¢Beg and PBeg ) tend to be shorter
than the other functions (for both words, rmanova : between-subjectsp > 0.5, within-
subjects p < 0:05, Tukey 95%). We also nd tokens of right used to check with the
interlocutor ( Chk ) to be on average shorter than the other two functions ofright (rmanova ,
between-subjectsp > 0:7, within-subjects p = 0:001; Tukey 95%).

Speaker-normalizedmean pitch over the whole word also presents signi cant di erences
for okay and yeah Instances labeledPEnd (acknowledgment and cue ending discourse
segment) present a higher mean pitch than the other functios (for both words, rmanova :
between-subjectsp > 0:6, within-subjects p < 0:01; Tukey 95%).

Finally, we nd some evidence of di erences in voice quality Both alright and okay show

a lower shimmer over voiced portions when starting a new segent (CBeg ) (rmanova :
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between-subjectsp > 0:9 for alright, p = 0:09 for okay; within-subjects p < 0:001 for
both words). Also, both okay and yeah present a lower noise-to-harmonics ratio (NHR)
for backchannels fmanova : between-subjectsp > 0:3 for okay, p = 0:04 for yeah; within-

subjects p < 0:005 for both words). Notice though that for these two variables some of the
between-subjectsp-values are low enough to suggest signi cant speaker e ectsTherefore,

our results related to di erences in voice quality should beconsidered preliminary.

13.5 Discussion

In this chapter we have presented statistical evidence of aumber of di erences in the pro-
duction of the various discourse/pragmatic functions of ACWs. The most marked contrasts
in acoustic/prosodic features relate to word nal intonati on and word intensity. Backchan-
nels typically end in a rising pitch, acknowledgments and ce beginnings in a falling pitch;
cue beginnings are produced with a high intensity, cue endigs with a very low one. Other
acoustic/prosodic features | duration, mean pitch, shimme r and NHR | also seem to vary

with the word usage.

Interestingly, every signi cant di erence that we nd fori ndividual ACWs is also present
when considering only the wordokay. For example, if a word like yeah shows cue endings
to have a lower intensity, then such di erence is also true fo the word okay. This suggests
a plausible explanation for this nding is that (1) the mechanisms of acoustic/prosodic
variation relative to word function are the same across all ACWs (alright, okay, yeah etc.),
and (2) the higher the ambiguity of the ACW (i.e., the more functions it may convey), the

more marked such variation becomes.

This possibility gains additional support from the fact that for mm-hm and uh-huh we
observe no clear di erences in the production of their two man functions, backchannel and
acknowledgment. These two words are used very rarely in the @mes Corpus for conveying
functions other than BC or Ack . Thus, listeners normally need to distinguish between two
relatively similar meanings, and the production similarities between the two suggest that
such distinction relies strongly on contextual cues. It is rasonable to assume that imm-hm

or uh-huh were frequently used to convey other functions, the acoustiprosodic variation
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found in their productions might be more noticeable.

In this chapter, we have looked only for variation along individual features, such as word
intensity and nal intonation. However, there is no reason to assume that such features
may not be coupled together to form more complex cues to disabiguation. In the next
chapter, we employ three machine learning algorithms to exfore, among other things,
the e ectiveness of di erent combinations of features in the automatic prediction of the
discourse/pragmatic functions of ACWs.

As shown earlier in this chapter, ACWs also display substantal contextual di erences
across functions, such as the position of the word in its corersational turn, or whether the
word is preceded and/or followed by silence. Such large di eences pose the question of
whether context alone is enough for disambiguation purposg with listeners not actually
using any of the observed acoustic/prosodic variation. Thg question is addressed in the

perception study presented in Chapter 15.
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Chapter 14

Automatic Classi cation of ACWSs

In this chapter we present results from a number of machine larning (ML) experiments
aimed at investigating how accurately a rmative cue words may be classi ed automat-
ically into their various discourse/pragmatic functions, a procedure from which multiple
spoken language processing applications could potentigllbene t. With that general goal
in mind, we explore several dimensions of the problem: we caider three classi cation
tasks, simulating the conditions in which actual applications may perform them, and study
the performance of di erent ML algorithms and feature sets m each task.

The rst ML task we consider consists in the general classi ation of any ACW (alright,
gotcha huh, mm-hm, okay, right, uh-huh, yeah yep yes yup) into any function (Ack,
BC, CBeg, PBeg, CEnd , PEnd , Mod , BTsk , Chk, Stl; see Table 12.1). The second
task involves identifying instances of these words used toignal the beginning (CBeg,
PBeg in our labeling scheme) or ending CEnd , PEnd ) of a discourse segment, which
could aid applications that need to segment speech into colient units, such as meeting
processing applications, or turn-taking components of IVRsystems. The third task consists
in identifying tokens conveying some degree of acknowledgemt (Ack , BC , PBeg, PEnd ),
a function especially important in IVR systems for knowing that the user has understood
the system's output. Previous studies disambiguate betwee the sentential and discourse
uses of cue phrases such aww, well and like, for which there typically exist comparable
amounts of instances conveying each use. For ACWs in the GamseCorpus, sentential uses

are rare, with the sole exception ofright. Therefore, disambiguating between discourse and
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sentential uses appears to be less important than distingwhing among di erent discourse
functions.

Speech processing applications operate in disparate conitins. Online applications,
such as IVR systems, process information as it is generatedhaving access to a very limited
scope, normally up to the last IPU uttered by the user. On the aher hand, offline
applications, such as meeting transcription systems, havahe whole audio le available
for processing. We simulate these two conditions in our expéments, assessing how the
limitations of online systems a ect performance.

We also group the features described in Section 12.2 into vesets | lexical ( LX), dis-
course 09, timing ( TN, acoustic (AQ and phonetic (PH | to determine the relative
importance of each feature set in the various classi cationtasks. Among other things,
this approach permits evaluating how accurately the function of ACWs may be determined
based solely on textual features. TTS systems could later wessuch information to produce
the target word with appropriate acoustic/prosodic featur es for its predicted function.

For our ML experiments we use three well-known algorithms wih very di erent char-
acteristics: the decision tree learnerC4.5 (Quinlan, 1993), the propositional rule learner
Ripper (Cohen, 1995), and support vector machines (SVM; Vapnik, 195; Cortes and Vap-
nik, 1995). We use the implementation of these algorithms povided in the Weka machine
learning toolkit (Witten and Frank, 2000), known respectively asJ48, JRip and SMO . We

also use 10-fold cross-validation in all experiments.

14.1 Classiers and feature types

To assess the predictive power of the ve feature types | lexical (LX), discourse 03, timing
(TM, acoustic (AQ and phonetic (PH | we exclude one type at a time and compare the

performance of the resulting set to that of the full model. Table 14.1 displays the error rate

1 In the case of SVM, prior to the actual tests we experimented with two kernel types: polynomial
(K (x;y) = (x + y)) and Gaussian radial basis function (RBF) ( K (x;y) = exp( jix vVjj?) for > 0).
We performed a grid search for the optimal arguments for eith er kernel using the data portion left out after
downsampling the corpus (see Section 12.1). The best resuls were obtained using a polynomial kernel with

exponent d = 1:0 (i.e., a linear kernel) and model complexity C = 1:0.
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of each ML classi er on the general task, classifying any ACWinto any of the most frequent
discourse/pragmatic functions (Ack , BC, CBeg, PEnd , Mod , Chk). Table 14.2 shows
the same results for the other two tasks: the detection of a dicourse boundary function
| cue beginning ( CBeg PBeg ), cue ending CEnd , PEnd ), or no-boundary (all other
labels); and the detection of an acknowledgment function | Ack , BC, PBeg or PEnd ,

vs. all other labels).

Error Rate SVM F-Measure

Feature Set C4.5 Ripper SVM Ack | BC | CBeg | PEnd | Mod | Chk
LX DS TM AC RPH6.6% * | 16.3% * | 14.3% .86 | .81 .89 .50 .97 .39

DS TM AC RH21.3%Y* | 17.2%Y 16.5%Y || .84 | .82 .87 44 .94 .00
LX TM AC PH20.3%Y* | 20.1% * | 17.0%Y || .84 | .80 .83 .16 .97 21
LX DS AC PH17.1% * | 18.1%Y* | 14.8%Y | .86 | .81 .89 .38 .97 .35
LX DS ™™ PH15.2%Y 16.3% 16.2%Y || .85 | .80 .86 .16 .97 .33
LX DS TM AC | 17.0% * | 16.9% * | 14.7% .86 | .80 .89 48 .97 .35

Majority class baseline ER | 56.4%
Word-based baseline ER| 27.7%

Mean human labelers ER| 9.8%

Table 14.1: Error rate of each classi er on the general task ging di erent feature sets;

F-measures of the SVM classi er; and error rate of two baseties and human labelers.

Y Signi cantly di erent from full model. * Signi cantly di erent from SVM.

(Wilcoxon signed rank sum test, p < 0:05.)

In both tables, the rst line corresponds to the full model, with all ve feature types.
The subsequent ve lines show the performance of models withust four feature types,
excluding one feature type at a time. The ¥ symbol indicates that the given classier
performs signi cantly worse when trained on a particular feature set than when trained

on the full set2 The X symbol indicates that the di erence between SVM and the given

2 All accuracy comparisons discussed in this chapter are tested for signi cance with the Wilcoxon signed
rank sum test (a non-parametric alternative to Student's t-test) at the p < 0:05 level, computed over the
error rates of the classi ers on the ten cross-validation fo Ids. These tests provide evidence that the observed

di erences in mean accuracy over cross-validation folds across two models are not attributable to chance.
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classi er, either C4.5 or Ripper, is signi cant. For example, the second line PS TM AC PH
in Table 14.1 indicates that, for the general classi cation task, the three models trained on
all but lexical features perform signi cantly worse than th e respective full models; also, the
performance of C4.5 is signi cantly worse than SVM, and the d erence between Ripper
and SVM is not signi cant.

The bottom parts of Tables 14.1 and 14.2 show the error rate ofwo baselines, as well
as an estimate of the error rate of human labelers. We considdéwo types of baseline: one
a majority-class baseline, and one that employs a simple rel based on word identity. In
the general classi cation task, the majority class is Ack , and the best performing word-
based rule ishuh! Chk, mm-hm! Mod , uh-huh! BC, right! Mod , others! Ack. For
the identi cation of a discourse boundary function, the majority class is no-boundary, and

the word-based rule also assigns no-boundary to all tokensFor the detection of an ac-

Disc. Boundary Acknowledgment

Feature Set C4.5 Ripper SVM C4.5 Ripper SVM

LX DS TM AC PH 6.9% 8.1% * 6.9% 5.8% 5.9% * | 4.5%

DS TM AC PH 7.6%Y 8.0% 7.6%Y 8.5% Y% 55% * | 6.4%Y

LX TM AC PH10.4%Y | 10.1%Y 9.5%Y 8.7%Y* 8.7% Y% 6.5%Y

LX DS AC PH 8.0%Y 8.7% * | 7.5%Y 5.3% 57% * | 4.9%

LX DS T™M PH 6.6% * 7.9% 8.9%Y 5.4% 5.4% 5.1%

LX DS TM AC 7.1% 8.3% * | 7.0% 58% * | 5.6% *| 4.6%
Majority class baseline ER 18.6% 36.5%
Word-based baseline ER 18.6% 15.3%
Mean human labelers ER 5.7% 3.3%

Table 14.2: Error rate of each classi er on the detection of @scourse boundary functions
and acknowledgment functions, using di erent feature sets
Y Signi cantly di erent from full model. * Signi cantly di erent from SVM.

(Wilcoxon signed rank sum test, p < 0:05.)

knowledgment function, the majority class is acknowledgmat, and the word-based rule is
right, huh! no-acknowledgment; other$ acknowledgment. The error rates of human label-

ers are estimated by comparing the labels assigned by eachblaler and the majority labels



CHAPTER 14. AUTOMATIC CLASSIFICATION OF ACWS 129

as de ned in Chapter 12.

The right half of Table 14.1 shows the F-measure of the SVM clssi er for each indi-
vidual ACW function, for the general task. The highest F-measures correspond toAck ,
BC, CBeg and Mod , precisely the four functions with the highest counts in the Games
Corpus. For PBeg and Chk the F-measures are much lower (and equal to zero for the four
remaining functions, not included in the table) due very likely to their low counts, which
prevent a better generalization during the learning stage. Future research could investi-
gate incorporating boosting and bootstrapping techniquesto reduce the negative e ect on
classi cation of low counts for some of the discourse/pragnatic functions of ACWSs.

For the three classi cation tasks, SVM outperforms, or performs at least comparably
to the other two classi ers whenever acoustic features AQ are taken into account. When
acoustic features are excluded, SVM's accuracy is comparébto, or worse than C4.5 and
Ripper. This is probably due to the fact that SVM's mathemati cal model is better suited
to exploit larger amounts of continuous numerical variables than the other two.

For the rst two tasks, the SVM classi er seems to take advantage of all but one feature
type, as shown by the signi cantly lower performance resultng from removing any of the
feature types from the full model | the sole exception is the p honetic type (PH, whose
removal in no case negatively a ects the accuracy of any clas er. C4.5 and Ripper, on
the other hand, appear to take more advantage of some featurtypes than others. For the
third task, lexical (LX) and discourse DS features apparently have more predictive power

for both C4.5 and SVM than the other types.

14.1.1 Session-speci ¢ and ToBI prosodic features

When including session-speci ¢ features in the full model,such as identity and gender of
both speakers (see Table 12.6), the error rate of the SVM claser is signi cantly reduced
for the general task (13.3%) and for the discourse boundaryunction identi cation task
(6.4%) (Wilcoxon, p < 0:05). For the detection of an acknowledgment function, the eror
rate is not modi ed when including those features (4.5%). Ths suggests the existence
of speaker di erences in the production of at least some funtions of ACWSs that may be

exploited by ML classi ers.
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Finally, the inclusion of categorical prosodic features baed on the ToBI framework,
such as type of pitch accent and break index on the target wordsee Table 12.6), does not

improve the performance of the SVM-based full models in any bthe classi cation tasks.

14.1.2 Individual features

To estimate the importance of individual features in our classi cation tasks, we rank them
according to an information-gain metric. We nd that, for th e three tasks, lexical (X),
discourse O3 and timing ( TN features dominate. The highest ranked features are the orge
capturing the position of the target word in its IPU and in its turn. Lexical identity and POS
tags of the previous, target and following words, and duratbn of the target word are also
ranked high. Acoustic features appear lower in the ranking;the best performing ones are
word intensity (range, mean, and standard deviation), pitch (maximum and mean), pitch
slope over the nal part of the word (200 ms and second half), wiced-frames ratio, and noise-
to-harmonics ratio. All phonetic features are ranked very bw. These results again con rm
the existence of large contextual di erences across funabns of ACWSs. Additionally, while
several acoustic/prosodic features extracted from the taget word contain useful information
for the automatic disambiguation of ACWSs, it is contextual i nformation that provides the

most predictive power.

14.2 Online and o ine tasks

To simulate the conditions of online applications, which process speech as it is produced
by the user, we consider a subset of features extracted fromhe speech signal only up to
the IPU containing the target ACW. These features are markedin Tables 12.5 and 12.6
(pages 112 and 113) with the letterB (backward looking). With these features, we train
and evaluate an SVM classi er for the three tasks described lhove. Table 14.3 shows the
results, comparing the performance of each classi er to thaof the models trained on the
full feature set, which simulate the conditions of o ine app lications. In all three cases the
online model performs signi cantly worse than its oine cor relate, but also signi cantly

better than the baseline (Wilcoxon, p < 0:05).
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All Functions Disc. Boundary | Acknowledgment
Feature Set Online | Oine | Online | Oine | Online | Oine
LX DS TM AC BRIl model) | 17.4%| 14.3% | 10.1% 6.9% 6.7% | 4.5%
LX DYText-based) 21.4%| 16.8%| 13.5% 9.1% | 10.0%| 5.9%
Word-based baseline 27.7% 18.6% 15.3%

Table 14.3: Error rate of the SVM classi er on online and o in e tasks.

Table 14.3 also shows the error rates of online and oine clasiers trained using
solely text-based features | i.e., only features of lexical (LX) or discourse D3 types.
Text-based models simulate the conditions of TTS systems: Rer determining the dis-
course/pragmatic function of ACWs, TTS systems may producesuch words with appro-
priate acoustic/prosodic parameters, such as those expled in Chapter 13. For the ACW
classi cation task, some TTS systems may only have informaibn up to the current utter-
ance available (online setting), while others may have the esmplete text available (o ine
setting). Our online and o ine text-based models perform signi cantly worse than the cor-
responding models that use the whole feature set, but still atperform the baseline models
in all cases (Wilcoxon, p < 0:05). Finally, the oine text-based models also outperform

their online correlates in all three tasks (Wilcoxon, p < 0:05).

14.3 Features extracted solely from the target word

In the descriptive statistics discussed in Chapter 13, we rported evidence of strong contex-
tual di erences across the various functions of ACWs, such a the position of the word in
its conversational turn, or whether the word is preceded andor followed by silence. Based
on that nding, we posed the question of whether such di erences would be su cient for
the listener to disambiguate the word meaning, thus occludng the described variation along
several acoustic/prosodic features of ACWs such as word nhintonation and word mean
intensity. We address this empirical question fully in the perception study discussed in
Chapter 15. In this section, we report on an experiment aimedat answering the same

qguestions, but for ML classi ers rather than humans: Are feaures extracted solely from
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the target ACW enough for predicting the function of ACWs, or do contextual features
improve the classi cation performance? While the answer tothis question may not directly
indicate which cues humans actually perceive and/or use to ambiguate, it will tell us
more about the existence, location and usefulness of autortiaally computable features for

ML classi cation of ACWSs.

For each of the three tasks | classi cation of all words into a Il functions, detection
of a discourse boundary, and detection of an acknowledgmeriunction, we train an SVM
classi er considering only features extracted from the taget word. These features are
marked in Tables 12.5 and 12.6 with the letterW, and comprise the word's lexical identity,

part-of-speech tag, duration, and a number of acoustic and ponetic features. Table 14.4

Feature Set All Functions | Disc. Boundary | Acknowledgment
Full model (LX DS TM AC PH 14.3% 6.9% 4.5%
Word-only model 23.6% 14.4% 15.0%
Word-based baseline 27.7% 18.6% 15.3%

Table 14.4: Error rate of the SVM classi er trained on features extracted

only from the target word.

contrasts the error rate of this classi er (which we call the word-only  model) to that of
the full model and the word-based baseline. As in the previos experiments, the full model

employs the complete feature set, extracted from the whole anversation.

On the one hand, the word-only model signi cantly outperforms the baseline in the
general and discourse boundary tasks (Wilcoxonp < 0:05), indicating that the target
ACW itself contains a substantial amount of information useful to those two tasks, and
that such information is at least partially captured by the w ord-only features and exploited
by the SVM classi er. On the other hand, the word-only model performs signi cantly worse
than the full model on the three tasks (Wilcoxon, p < 0:05). This means that the word-only
features are insu cient for the SVM classi er to reach the accuracy level of the full model,

and that our contextual features signi cantly reduce the classi cation error rate.
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14.4 Backchannel detection

The correct identi cation of backchannels is a desirable caability for speech processing
systems, as it would allow to distinguish between two oppoge intentions of speakers' con-
tributions: that of taking the conversational oor, and tha t of encouraging the interlocutor
to continue talking.

We rst consider a binary classi cation task, backchannels vs. the rest, in an oine
condition; i.e., using information from the whole conversdion. In such a task, an SVM
classi er achieves a 4.91% error rate, slightly yet signi antly outperforming the word-based
baseline fnm-hm, uh-huh! BC , others! no-BC), with 5.17% (Wilcoxon, p < 0:05).

Online applications such as IVR systems need to classify ewg new speaker contribu-
tion immediately after it has been uttered, and without access to any subsequent context.
The Games Corpus contains approximately 6700 turns followmg speech from the other
speaker, all of which begin as potential backchannels and mel to be disambiguated by the
listener. Most of these candidates can be trivially discarégd using a simple observation
about backchannels: by de nition they are short, isolated uterances, and consist normally
in just one ACW. Of the 6700 candidate turns in the corpus, ony 2351 (35%) begin with
an isolated ACW, including 753 of the 757 backchannels in thecorpus2 At this point, we
explore using a ML classi er to distinguish the backchanneg from the other functions. The
same word-based majority baseline described above achievan error rate of 11.56%. An
SVM classi er trained on features extracted from up to the current IPU (to simulate the
online condition of an IVR system) fails to improve over this baseline, achieving an error
rate of 11.51%, not signi cantly di erent from the baseline. A possible explanation for this
might be that backchannels seem to be dicult to distinguish from acknowledgments in
many cases, leading to an increase in the error rate. (Recalfrom the statistical analyses in
the previous chapter, the acoustic/prosodic similarities of these two functions for mm-hm
and uh-huh, for example.) We conclude that further research is neededa develop novel

approaches to this crucial problem of IVR systems.

% The four remaining backchannels correspond to a rare phenomenon in which the speaker overlaps
the interlocutor's last phrase with a short acknowledgment , followed by an optional short pause and a

backchannel. Example: A: but it doesn't overlap *them. B: right* yeah yeah # okay.
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14.5 Discussion

In this study of automatic classi cation of ACWs we have shown that, for spoken task-
oriented dialogue, the simple discourse/sentential distnction is insu cient. In consequence,
we have de ned two new classi cation tasks (the detection ofan acknowledgment function,
and the detection of a discourse segment boundary function)besides the general task of
classifying any ACW into any function. We have shown that SVM models based on lexical,
discourse, timing and acoustic features approach the errorate of trained human labelers in
all tasks, while our automatically computed phonetic features o er no improvement. Ad-
ditionally, we have experimented with several combinatiors of feature sets, in an attempt
to simulate the settings of real applications. All these resilts are intended to aid future re-
searchers and developers in building e ective classi ers the discourse/pragmatic function
of ACWs.

Finally, we have shown results suggesting that the predictve power of contextual infor-
mation is much stronger than that of the acoustic, prosodic and phonetic characteristics of
the target word itself. Again, this nding raises the question of whether context alone is
su cient for disambiguation purposes. The following chapter describes a perception study
aimed at shedding light on this issue, investigating how hunans' interpretations of ACWs

varies when some or no context is available.
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Chapter 15

A Perception Study of Okay

In this chapter, we address the question of how hearers disaniguate the discourse pragmatic
function of ACWs. Our main goal is to determine the role of discourse context in this
process: Can listeners classify ACW tokens reliably from $itening to the word alone, or
do they require contextual information? Additionally, we | ook for acoustic, prosodic and

phonetic features potentially used by listeners in the disanbiguation process.

Below we describe a perception experiment in which listener are presented with a
number of spoken productions ofokay, both in isolation and in context, and asked to select
the function of each token. Subsequently, we examine how thdisteners' classi cations
vary across conditions, and look for acoustic, prosodic anghonetic correlates of these

classi cations.

15.1 Experiment design and implementation

For our perception study we choose the most frequent a rmative cue word in the Games
Corpus, okay, for two reasons. First, as shown in Chapter 13,0kay is the ACW that
presents the highest degree of variation along the studiednesodic/acoustic features, as well
as the most heavily overloaded ACW, with instances conveyig each of the ten identi ed
discourse/pragmatic functions. Second, the over 2200 insinces ofokay in the corpus allow

for a balanced experimental design, with tokens uttered by everal di erent speakers.
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We choose the three most frequent simple functions obkay:* Acknowledgment/agree-
ment (Ack ), Backchannel (BC ), and Cue beginning discourse segmentGBeg). Addi-
tionally, we choose tokens with three di erent degrees of ptential ambiguity, based on the
agreement achieved by the labelers that annotated all ACWsn the corpus. Unanimous
tokens are those that were assigned the same function by thentee labelers;majority  to-
kens were assigned the same function by exactly two of the tlee labelers;no-agreement
tokens were assigned a particular function by exactly one laeler, and two other functions
by the remaining two labelers.

To obtain a good coverage of the three functions and the threelegrees of ambiguity, we
identify 9 categories of okay tokens to include in the experiment. 3 functions Ack , BC,
CBeg) 3 levels of labeler agreement (unanimous, majority, no-agrement). To control
for speaker variation in the stimuli, we select tokens from Gspeakers (3 female, 3 male) who
produced at least one token for each of the 9 conditions, ledwg a total of 54 tokens.

We prepare two versions of each token to investigate whethesubjects' classi cations of
okay are dependent upon contextual information or not. Theisolated versions consist of
only the word okay extracted from the waveform. For the contextualized versions, we
extract two full speaker turns for each okay,? including the full turn containing the target
okay plus the full turn from the previous speaker. In the following three sample contexts,

pauses are indicated with “#', and the target okays are underlined:

A: yeah # um there's like there's some space there's

B: okay # | think | got it

A: but it's gonna be below the onion

B: okay

! Even though Pivot ending ( PEnd ) okays were more frequent than BC okays, we choose to avoid
compound functions like the former (a combination of Ack and CBeg ), using only simple functions instead.

2 Recall from Chapter 2 that we dene a turn as a maximal sequence of IPUs from one speaker, such
that between any two adjacent IPUs there is no speech from the interlocutor. An inter-pausal unit (IPU)

is de ned as a maximal sequence of words surrounded by silene longer than 50 ms.
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A: okay # alright # I'll try it # okay
B: okay the owl is blinking

We present the isolated okay tokens in single-channel audio les; the contextualizedokay
tokens are formatted so that each speaker is presented to siydcts on a di erent channel,

with the speaker uttering the target okay consistently on the same channel.

The perception study is divided in two parts. In the rst part (hereafter, the isolated
condition ), subjects are presented with the 54 isolatecbkay tokens, in a di erent random
order for each subject. They are given a forced choice task tolassify tokens asAck , BC,
or CBeg, with the corresponding function labels also presented in aandom order for each
token. In the second part (the contextualized condition ), the same subjects are given
54 contextualized tokens, presented in a dierent random oder, and asked to make the

same choice.

We recruited 20 (paid) subjects for the study, 10 female and @ male, all between the
ages of 20 and 60. All subjects reported no hearing problemsnd were native speakers of
Standard American English, except for one subject who repded being a native speaker
of Jamaican English. Subjects performed the study in a quietlab using headphones to
listen to the tokens and indicating their classi cation decisions in a GUI interface on a lab
workstation. They were given instructions on how to use the nterface before each of the
two parts of the study. The full instructions, as well as samfde screens of the interface of

the study, are given in Appendix G.

During the study, subjects could listen to the sound les as nmany times as they wished
but were instructed not to be concerned with answering the gestions \correctly”, but to
answer with their immediate response if possible. They werallowed though to change their
selection as many times as they liked before moving to the néxscreen. In the contextual-
ized condition, they were also shown an orthographic transgption of a small part of the
contextualized token, aimed only at helping subjects idenify the target okay. The mean

duration of the rst part of the study was 25 minutes, and of th e second part, 27 minutes.
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15.2 Subject ratings

The distribution of class labels in each experimental condion is shown in Table 15.1.
While this distribution roughly mirrors our selection of equal numbers of tokens from each
previously-labeled class, in both parts of the study more t&ens were labeled aAck (ac-
knowledgment/agreement) than asBC (backchannel) or CBeg (cue to topic beginning).
This supports the hypothesis that acknowledgment/agreemat acts as the default interpre-

tation of okay.

Isolated Contextualized
Ack | 426 (39%)| 452  (42%)
BC | 324 (30%)| 306 (28%)
CBeg | 330 (31%)| 322  (30%)
Total | 1080 (100%)| 1080  (100%)

Table 15.1: Distribution of label classes in each study conition.

Next we examine inter-subject agreement using Fleiss' measure for multiple raters?3
Table 15.2 shows Fleiss' calculated for each individual function label vs. the other two

labels, and for all three labels together, in both study condtions. While there is very

Isolated | Contextualized
Ack vs. Rest| 0.089 0.227
BC vs. Rest| 0.118 0.164
CBeg vs. Rest| 0.157 0.497
All 0.120 0.293

Table 15.2: Fleiss' for each label class in each study condition.

little overall agreement among subjects on how to classify akens in the isolated condition,

agreement is higher in the contextualized condition, reacing a moderate agreement for class

3 The measure of agreement above chance is interpreted as follows0 = None, 0-0.2 = Small, 0.2-0.4

= Fair, 0.4-0.6 = Moderate, 0.6-0.8 = Substantial, 0.8-1 = Al most perfect.
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CBeg ( score of 0.497). This suggests that context helps distingsh the cue beginning
function of okay more than the other two functions.

Recall from Section 15.1 that theokay tokens were chosen in equal numbers from three
classes (unanimous, majority, and no-agreement) accordm to the level of agreement of
our three original labelers, who had the full dialogue cont&t available for making their
decisions. Table 15.3 shows Fleiss' measure now grouped by level of agreement, again

presented for each context condition. We see here that the ber-subject agreement also

Isolated | Contextualized | Original labelers
No-agreement| 0.085 0.104 {
Majority | 0.092 0.299 {
Unanimous | 0.158 0.452 {
All 0.120 0.293 0.312

Table 15.3: Fleiss' in the two study conditions, grouped by level of agreement of

the three original labelers.

mirrors the agreement of the three original labelers. In boh study conditions, tokens on
which the original labelers agreed also had the highest scores, followed by tokens in the
majority and no-agreement classes, in that order.

The overall is small at 0.120 for the isolated condition, and fair at 0.28 for the
contextualized condition. The three original labelers al® achieved fair agreement at 0.312.
The similarity between the latter two  scores suggests that the full context available to the
original labelers and the limited context presented to the participants of the perception study
o ered comparable amounts of information to disambiguate between the three functions.
On the other hand, the unavailability of any context clearly a ected subjects' decisions. We
conclude that context is of considerable importance in the mterpretation of the word okay;,

although even a relatively limited context appears to su ce.

4 For the calculation of this , we consider four label classes: Ack , BC, CBeg, and a fourth class
“other' that comprises the remaining seven discourse/pragmatic functions of ACWSs. Since the existence of
a fourth category may have an e ect on the measurement of inte r-subject agreement, these scores should

be compared with caution.
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15.3 Cues to interpretation

In this section we perform a series of statistical tests aimé at nding correlations between
the discourse/pragmatic function perceived by subjects ineither study condition, and a
number of acoustic, prosodic, phonetic and contextual feaitres.

For each target okay, we examine its duration and its maximum, mean and minimum
pitch and intensity (all raw and speaker-normalized), and the slope of the pitch, intensity
and stylized pitch tracks, calculated over the whole word ard over its last nal portion. We
also consider nominal features extracted from the ToBI trarscriptions of each token, such
as pitch accent, phrase accent and boundary tone. All of thes features are described in
detail in Section 12.2 (pages 109 and following).

Additionally, two expert annotators transcribed together the phonetic realization of each
token of okay using the International Phonetic Alphabet (IPA) conventio ns. In the tokens
used in this experiment we nd the following variations for t he three phonemes (/aJ, /k/,

lell) of okay:

loU: 1, [Al [5], [Q, [OW [m], [N, [@ [@V
Kl [ G, K], [kx], [al, [X].
lell: [e], [el], [B, [e@

From the phonetic transcriptions we calculate the duration of each phone and of the velar
closure, whether the targetokay is at least partially whispered or not, and whether there
is glottalization in the target okay.

First, for each numerical feature we compute Pearson's coalation coe cient to look
for an association between the feature and the proportion oubjects that chose each label.
(For example, if a particular okay was labeled asAck by 5 subjects, asBC by 3, and
as CBeg by 12, then its corresponding proportions are 5/20, 3/20 and12/20, or 0.25,
0.15 and 0.6.) Subsequently, we compute two-sidetttests to assess the signi cance of the
correlations. Table 15.4 shows the signi cant results (twosided t-tests, p < 0:05) for the
isolated and contextualized conditions, respectively.

In the isolated condition, we observe that subjects tended ¢ classify asAck tokens of

okay which had a longer realization of the /k/ phoneme; asBC , those with a lower intensity,
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Acknowledgment/agreement

duration of realization of /k/ 0:299
Backchannel r

stylized pitch slope, 2nd half 2nd syl| 0:752
pitch slope over 2nd half 2nd syl. 0:409
speaker-norm. maximum intensity 0:372
pitch slope over last 80 ms 0:349
speaker-norm. mean intensity 0:327
duration of realization of /e l/ 0:278
word duration 0:277
Cue to disc. segment beginning r

stylized pitch slope over whole word | 0:380
pitch slope over whole word 0:342
pitch slope over 2nd half 2nd syllable 0:319

141
Acknowledgment/agreement r
latency of Spkr A before Spkr B's turn 0:528
duration of silence by Spkr B before okay| 0:404
number of words by Spkr B after okay 0:277
Backchannel r
pitch slope, 2nd half of 2nd syllable 0:520
pitch slope, last 80 ms 0:455
number of words by Spkr A before okay 0:451
number of words by Spkr B after okay 0:433
duration of speech bySpkr B after okay | 0:413
latency between the two turns 0:385
intensity slope over 2nd syllable 0:279
Cue to disc. segment beginning r
latency of Spkr A before Spkr B's turn 0:645
number of words by Spkr B after okay 0:481
number of words by Spkr A before okay 0:426
pitch slope over 2nd half of 2nd syllable | 0:385
pitch slope over last 80 ms 0:377
duration of speech bySpkr B after okay | 0:338

Table 15.4: Features signi cantly correlated to the proportion of votes for each label.

Isolated (left) and contextualized conditions.

a longer duration, a longer realization of the /el phoneme, and a nal rising pitch; and

as CBeg, those ending in a falling pitch. In the contextualized condtion, we nd very

di erent correlations, nearly all of them involving contex tual features, such as the latency

before Speaker Bs turn, or the number of words by each speaker before and aftehe target

okay. Notably, only one of the features showing strong correlatns in the isolated condition

presents the same strong correlation in the contextualizeadondition: word nal pitch slope.

In both conditions subjects tended to label tokens with a nal rising pitch contour as BC ,

and tokens with a nal falling pitch contour as CBeg.

We conduct next a series of two-sided Fisher's exact tests tond correlations between
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subjects' classi cation of okay and nominal features related to the phonetic and prosodic
transcriptions of the tokens. We rst divide the 54 tokens of each condition into three groups,
according to the label assigned by a plurality of subjects, and explore whether these three
groups correlate with our nominal features. We nd a signi cant association between the
realization of the /o U phoneme and the perceived discourse/pragmatic function & okay in
the isolated condition (p < 0:005). Table 15.5 shows that, in particular, [m] seems to be th

preferred realization forBC okays, [@for Ack , and [OJland [Q for Ack and CBeg . Notably,

?IA| B[OV Q|IN| @ [@ ] [m]

Ack [0 O | 5| 6 [4]0| 0 |8|0|O0

BC |2/ 0|41 |0]|1|O0|1]|1]5

CBeg |1| 1|2 | 3 |4|0| 1 |3|0|O

Table 15.5: Realization of the /oU phoneme, grouped by subject plurality label.

Isolated condition only.

we do not nd such signi cant associations in the contextualized condition. However, we
do nd signi cant correlations in both conditions between okay classi cations and the type
of phrase accent and boundary tone on the target word (Fishés Exact Test, p < 0:05 for
the isolated condition, p < 0:005 for the contextualized condition). Table 15.6 shows th&a
L-L% tends to be associated withAck and CBeg, H-H% with BC, and L-H% with Ack
and BC . In this case, such correlations are present in the isolated¢ondition, and enhanced
in the contextualized condition.

Summing up, for tokens ofokay listened in isolation, with only acoustic, prosodic and
phonetic properties available to the subjects, a few featues seem to strongly correlate with
the perception of word function. For example, maximum intensity, word duration, and
realizing the /oU phoneme as [m] tend to be associated with the backchannel foction,
while the duration of the realization of the /k/ phoneme, and realizing the /oUW phoneme

as [@tend to be associated with the acknowledgment/agreementunction.

5 A plurality is also known as asimple majority : the candidate who gets more votes than any other

candidate is the winner.
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H-H% | ['|H-L% | L-H% | L-L% | other
Ack 0 2 4 8 9
Isolated | BC 3 3 1 5 3
CBeg 1 1 0 8 5
Ack 0 2 3 10 10
Contextualized | BC 4 3 2 1 2
CBeg 0 1 0 10 5

Table 15.6: Phrase accent and boundary tone, grouped by subg¢t plurality label.

In the second part of the study, for the contextualized verson of the same tokens of
okay, most of the strong correlations of perceived word functionwith acoustic, prosodic and
phonetic features are replaced with correlations with conéextual features, such as latency and
turn duration. In other words, these results suggest that catextual features might override
the e ect of most other features of okay. There is nonetheless one notable exception: word
nal intonation. Captured by the pitch slope and the ToBI lab els for phrase accent and
boundary tone, this feature seems to play a central role in tle interpretation of both isolated

and contextualized okays.

15.4 Discussion

In this perception study, we have presented evidence of di eences in the interpretation
of the discourse/pragmatic function of isolated and contexualized instances of okay by
human listeners. We have shown that word nal intonation strongly correlates with the
subjects' classi cation of okays in both conditions. Additionally, the higher degree of inter-
subject agreement in the contextualized condition, along vith the strong correlations found
for contextualized features, suggests that context, when \ailable, plays a central role in
the disambiguation of okay. (Note, however, that further research is needed in order to
assess whether these features are, indeed, perceptually portant, both individually and
combined.)

We have also presented results suggesting that acknowledgmt/agreement acts as a
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default function for both isolated and contextualized okays. Furthermore, while this func-
tion remains confusable with the backchannel function in bah conditions, the availability

of some context helps in distinguishing those two from theCBeg function.
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Chapter 16

Entrainment of ACW Usage

This nal chapter describes a preliminary study conducted in collaboration with Prof. Ani
Nenkova (Dept. of Computer and Information Science, Univesity of Pennsylvania), that
investigates how speakers tend to adapt their usage of ACWsral other high-frequency
words to match their interlocutors’, and the relation of thi s phenomenon to task success and
dialogue coordination (Nenkova et al., 2008). This study ircorporates a new dimension to
the analysis of ACWSs and turn-taking in dialogue, by portraying each speaker not as static
and behaving always in the same manner, but rather as constaly changing his/her speech
according to the environment. Modeling whether and how this phenomenon takes place
and identifying its potential implications will help impro ve our understanding of variation

in human speech, and should aid IVR systems in providing a mag natural user experience.

16.1 Previous research on speaker entrainment

When people engage in conversation, they adapt the way theypeak to their conversa-
tional partner. For example, they often adopt a certain way of describing something based
upon the way their conversational partner describes it, negtiating a common description,
particularly for items that may be unfamiliar to them (Brenn an, 1996). They also alter
their amplitude, if the person they are speaking with speakdouder than they do (Coulston
et al., 2002; Ward and Litman, 2007), or reuse syntactic consuctions employed earlier

in the conversation (Reitter et al., 2006). This phenomenonis known in the literature as
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entrainment

There is a considerable body of literature which posits thatentrainment may be cru-
cial to human perception of dialogue success and overall gliy, as well as to participants'
evaluation of their conversational partners. Pickering ard Garrod (2004) propose that
the automatic alignment at many levels of linguistic representation (lexical, syntactic and
semantic) is key for both production and comprehension in dilogue, and facilitates in-
teraction. Goleman (2006) also claims that a key to successf communication is human
ability to synchronize their communicative behavior with t hat of their conversational part-
ner. For example, in laboratory studies of non-verbal entranment (mimicry of mannerisms
and facial expressions between subjects and a confederate}hartrand and Bargh (1999)
nd not only that subjects display a strong unintentional en trainment, but also that greater
entrainment/mimicry leads subjects to feel that they like t he confederate more and that
the overall interaction is progressing more smoothly. Peofe who have a high inclination
for empathy (understanding the point of view of the other) entrains to a greater extent
than others. Reitter and Moore (2007) also nd that degree of entrainment in lexical and
syntactic repetitions that take place in only the rst ve mi nutes of each dialogue in the
HCRC Map Task Corpus signi cantly predicts task success.

In the following sections, we examine a novel dimension of érainment between con-
versational partners: the use of high-frequency words, sicas a rmative cue words, or the
most frequent words in a dialogue. We discuss experiments othe association of entrain-

ment in the usage of such words with task success and turn-takg behavior.

16.2 Measures of entrainment

We de ne two measures of entrainment of the usage of a word cks c. Both measures
capture in di erent ways the di erences in usage frequency ¢ a word classc by the two
speakersS; and Sy. The rst one is the negated sum, for each wordw 2 c, of the absolute

di erence between the fraction of timesw is used byS; and S,. More formally,

counts, (w)  counts, (w)
ALL s, ALL s,

ENTR1(c) =

w2c
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Here, ALL g, is the number of all words uttered by speakerS; in the given conversation,
and countg, (w) is the number of times S; used wordw. ENTR; ranges from O to 1 ,
with 0 meaning perfect match on usage of lexical items in clasc. Our second measure of

entrainment is de ned as

X
jecounts, (w)  counts, (w)j

ENTR,(0)= ¥&¢
(countg, (w) + counts, (wW))
w2c

The entrainment score de ned in this way ranges from 0 to 1, with 0 meaning perfect

match on lexical usage and 1 meaning perfect mismatch.

16.3 Entrainment and task success

In the Games Corpus, we hypothesize that the game score achied by the participants is
a good measure of the e ectiveness of the dialogue. To deterime the extent to which task
success is related to the degree of entrainment in high-fregency word usage, we examine the
dialogues in the Games Corpus. We compute the correlation @cient between the game
score (normalized by the highest achieved score for the gantgpe) and our two measures

of entrainment between the speakers $; and S,) in four high-frequency word classes:

ACW: A rmative cue words.

FP: Filled pauses: uh, um, mm. The corpus contains 1845 instances of lled pauses

(2.5% of all tokens).
25MF-G: The 25 most frequent words in the current game.

25MF-C: The 25 most frequent words over the entire corpus:the, a, okay, and, of,
I, on, right, is, it, that, have yeah like, in, left, it's, uh, so, top, um, bottom, with,

you, to.

The correlations between the normalized game score and thegmeasures of entrainment
are shown in Table 16.1:r is Pearson's correlation coe cient; p is the signi cance of the

correlation estimated with two-sided t-tests. ENTR for the 25 most frequent words, both
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corpus-wide and game-speci c, is highly and signi cantly crrelated with task success, with

stronger results for game-speci ¢ words. For the lled pauses class, there is essentially no

ENTR, ENTR;
Word class r p r p
ACW 0.230 0.116| 0.372 0.009
FP 0:080 0.591| 0:007 0.964
25MF-G 0.376 0.008 0.260 0.074
25MF-C 0.341 0.018 0.187 0.202

Table 16.1: Correlations of entrainment and game score.

correlation between entrainment and task success, while foa rmative cue words there
is association only under theENTR, de nition of entrainment. The di erence in results
betweenENTR; and ENTR suggests that the two measures of entrainment capture di er
ent aspects of dialogue coordination. Exploring novel formlations of entrainment deserves

future attention.

16.4 Entrainment and dialogue coordination

The coordination of turn-taking in dialogue is especially important for successful interac-
tion. Speech overlaps Q), might indicate a lively, highly coordinated conversation, with
participants anticipating the end of their interlocutor's speaking turn. Smooth switches §)
with no overlapping speech are also characteristic of goodoordination, in cases where these
are not accompanied by long pauses between turns. On the othéand, interruptions (1)
and long inter-turn latency | long simultaneous pauses by th e speakers | are generally
perceived as a sign of poorly coordinated dialogues.

To determine the relationship between entrainment and diabgue coordination, we exam-
ine the correlation between entrainment types and the propation of interruptions, smooth
switches and overlaps, in the Objects portion of the Games Qpus. We also look at the
correlation of entrainment with mean latency in each dialogie. Table 16.2 summarizes the

major ndings.
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r p
ENTR1(25MF-C) | | | 0.612 | 0.035
ENTR1(25MF-G) | | 0.514| 0.087
ENTR1(ACW) O | 0.636 | 0.026
ENTR,(ACW) O | 0.606 | 0.037
ENTR1(FP) O | 0.750 | 0.005
ENTR,(25MF-G) | O | 0.605 | 0.037
ENTR,(25MF-G) | S | 0.663 | 0.019
ENTR,(ACW) lat | 0.757 | 0.004
ENTR,(25MF-G) | lat | 0.523| 0.081

Table 16.2: Correlations of entrainment with proportion of smooth switches, overlaps,

interruptions, and mean latency (lat).

Two measures that signi cantly correlate with task success| ENTR(25MF-C) and
ENTR(25MF-G) | also correlate negatively with the proportion of interruptions in the
dialogue. Additionally, overlaps are strongly associatedwvith entrainment in usage of ACWSs,
lled pauses and game-speci ¢ most frequent words. Long latncy is negatively associated
with entrainment in a rmative cue words and game-speci ¢ mo st frequent words.

Unexpectedly, smooth switches correlate negatively with etrainment in game-speci c
most frequent words. This result might be confounded by the pesence of long latencies
in some switches. While smooth switches are desirable, esgally in IVR systems, long
latencies between turns can indicate lack of coordination.

Overall, the higher the presence of speaker entrainment, ta more engaged the par-
ticipants and the better coordination there is between them with shorter latencies, more

overlaps and fewer interruptions.

16.5 Discussion

In this section we have presented a preliminary corpus studyelating dialogue success and

coordination with speaker entrainment on common words: armative cue words, lled
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pauses, and most frequent words in the corpus and in a dialogu Our results suggest that
entrainment over classes of frequent words strongly corrates with task success, and with
engaged and coordinated turn-taking behavior.

These ndings open new topics for future research, such as @erimenting with novel
ways of quantifying the degree of entrainment between speaits, and also with other word
classes. Most importantly, future research should asses$¢ causal relations holding be-
tween the associations described in this study. If speakerrngrainment is found to cause
task success and/or dialogue coordination, then IVR systendesigners could try to adapt
the system's usage of high-frequency words to match the usst aiming at improving the
performance and usability of such systems. On the other handif entrainment is a conse-
guence of task success and/or dialogue coordination, then it wouldconstitute a valuable
evaluation metric for IVR systems: measuring the degree to \uich the user entrains with

the system could be used to estimate the performance and usdaity of such systems.
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Chapter 17

Conclusions and Future Work

The studies of ACWs presented in this thesis provide evidene of several dierences in
the production of the various discourse/pragmatic functions of ACWs. We nd marked

contrasts in acoustic/prosodic features, such as word nalintonation and word intensity,

and also in contextual features, such as the position of the ard in its conversational turn,

or whether the word is preceded and/or followed by silence. &rthermore, in a perception
study of the uses of the wordokay, we nd that such contextual di erences play a central

role in the disambiguation of its function by human listeners.

Our study of automatic classi cation of ACWs shows that the simple discourse/sen-
tential distinction commonly used for other cue phrases is msu cient in this case. In
consequence, we propose two new classi cation tasks (the getion of an acknowledgment
function, and the detection of a discourse segment boundaly besides the general task of
classifying any ACW into any function. SVM models based on lgical, discourse, timing
and acoustic features approach the performance of trained uman labelers in all tasks.
Additionally, we have experimented with several combinations of feature sets to simulate
the settings of real applications, in an attempt to aid futur e researchers and developers in
building e ective classi ers of the discourse/pragmatic function of ACWSs.

Finally, we have presented a preliminary study of speaker emmainment on the usage of
ACWSs, lled pauses, and other classes of frequent words. Ouresults suggest that such
entrainment strongly correlates with task success, and wih engaged and coordinated turn-

taking behavior.
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We propose two possible directions for future research. F#t, the results obtained by
our machine learning classi ers in the task of automatic detction of backchannels failed to
signi cantly outperform the majority-class baseline. This is a crucial task for IVR systems,
which need the capability to distinguish users' backchannés from turn-taking attempts.
Therefore, future research should look into novel approachs to this problem.

A second direction is related to speaker entrainment. Our pomising preliminary results
encourage future research to look into new ways of capturinghe degree to which speakers
adapt their speech to resemble their interlocutors'. Additionally, establishing the causal re-
lations of speaker entrainment with task success and/or dibogue coordination could provide
powerful tools to IVR system designers, for either improvirg or evaluating the performance

and usability of such systems.
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Chapter 18

Conclusions

In this thesis we described the results of a series of studiemmed at advancing our under-
standing of various aspects of spoken dialogue. We collecteand annotated a large corpus
of spontaneous task-oriented dyadic conversation in Stangrd American English, on which
we studied turn-taking behavior and the usage of heavily ovdoaded cue words such askay
or alright. Our hope is that these ndings will help improve the quality and usability of

IVR systems and other spoken language processing applicatis.

18.1 The Columbia Games Corpus

The rst main contribution of this work is the Columbia Games Corpus, which comprises
twelve spontaneous task-oriented dyadic conversations irstandard American English be-
tween thirteen people, totaling nine hours of dialogue. Thecollection and annotation of
this corpus was described in Part | of this thesis. In additin to time-aligned orthographic
transcriptions, it contains manual annotations of diverse phenomena, including (1) the
discourse/pragmatic function of a rmative cue words, (2) t he category of turn-taking ex-
changes between the conversation participants, (3) intonaonal patterns and other aspects
of the prosody (using the ToBI framework), (4) non-word vocdizations such as laughs,
coughs and breaths, and (5) the form and function of question. This corpus represents a

valuable data set for future research in spoken dialogue.
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18.2 Turn-taking

The second main contribution of this work is a large-corpusbased systematic study of turn-
taking behavior in Standard American English dialogue. The motivation for this study
consisted in developing a framework that would help improvethe turn-taking decisions

made by state-of-the-art IVR systems. The results were presnted in Part Il of this thesis.

18.2.1 Summary of ndings and novel contributions

We identi ed and described seven turn-yielding cues | disti nct events that strongly cor-
relate with the imminent occurrence of a conversational tun boundary: (1) a falling or
high-rising nal intonation; (2) a reduced nal lengthenin g; (3) a low intensity level; (4)
a low pitch level; (5) a point of textual completion; (6) a high value of three voice qual-
ity features: jitter, shimmer, and noise-to-harmonics ratio; and (7) a long duration of the
nal inter-pausal unit. We showed that these cues combine t@ether to form complex sig-
nals, such that the likelihood of a turn-taking attempt by th e interlocutor increases almost
linearly with respect to the number of cues conjointly displayed by the speaker.

To our knowledge, this is the rst study to systematically examine all of these turn-
yielding cues, both individually and combined together to form complex signals. An im-
portant characteristic of our results is that they were drawn from a large corpus of conver-
sations between thirteen di erent people. Most previous stidies of turn-yielding cues, by
contrast, examine a smaller number of conversations | typically only two or three. Thus,
our ndings o er statistically robust evidence of the exist ence of these cues and support
their generalizability to larger speaker populations.

Additionally, we provided a computational de nition of the presence or absence of each
individual cue, in contrast with the perceptual or impressionistic de nitions used in most
previous studies of turn-yielding cues. Using automaticdy computed cues eliminates a
source of subjectivity from human annotators and makes the esults more straightforward
to incorporate into speech processing systems. In particak, we introduced a novel proce-
dure for predicting the textual completion of speech utterances. Our SVM-based classi er,

trained on lexical and syntactic features extracted from a snall manually labeled data set,
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signi cantly outperformed the majority-class baseline and approached human agreement.
Given the unambiguous evidence presented in this and previgs studies signaling textual
completion as one of the most prominent turn-yielding cues,our procedure represents an
important contribution in itself to the advancement of turn -taking technologies.

Our results for the nal intonation and textual completion ¢ ues, the ones most frequently
examined in previous studies, are consistent with the liteature: Turn switches tend to follow
textually complete speech segments with falling or high-rsing nal intonation. For the cues
related to a drop in intensity, a drop in pitch, and a longer IP U duration, our results are
also consistent with the hypotheses presented in the literaure, although those cues received
much less attention in previous studies. In addition to providing solid evidence validating
the existence of those ve turn-yielding cues, we describedwo new cues which havenot
been previously examined for English dialogues: a high leVef jitter, shimmer and noise-to-
harmonics ratio | acoustic features associated with the perception of voice-quality; and a
reduction or attenuation of the nal lengthening that typic ally precedes prosodic boundaries.

We also described six backchannel-inviting cues | events inthe current speaker's speech
that may invite the listener to produce a short utterance cornveying continued attention:
(1) arising nal intonation; (2) a high intensity level; (3) a high pitch level; (4) a nal POS
bigram equal to "DT NN', "JJ NN' or "NN NN'; (5) a low value of no ise-to-harmonics ratio;
and (6) a long duration of the nal inter-pausal unit. We showed that the likelihood of
occurrence of a backchannel from the interlocutor increasein a quadratic fashion with the
number of cues conjointly displayed by the speaker. The wha of our study of backchannel-

inviting cues represents a novel contribution to the eld.

18.2.2 Impact

The purpose of the study of turn-taking behavior presented n this thesis was to provide a
framework that would help improve several decisions of IVR gstems, which should, in turn,
enhance the usability and naturalness of such systems. If # system intends to keep the
conversational oor, it should formulate its output in a way that includes as few as possible
of the turn-yielding cues we have found to be important, a belavior that will decrease the

likelihood that the user will take the turn. For example, the output of the IVR system's
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speech synthesis component should end its IPUs in plateau fonation, with high intensity
and pitch levels, and leaving utterances textually incompkte (e.g., ending in expressions
such asand or also). If the system wants to yield the oor to the user, it should f ormulate
its output to include as many as possible of the turn-yielding cues we have found to be
signi cant, which will more likely lead to a turn-taking att empt by the user. For example,
the system's nal IPU should be textually complete, have low intensity and pitch levels, and
end in either falling or high-rising intonation (depending on whether the system's message
is a statement or a direct question).

From the results presented in this thesis, it should also be pssible to improve the
detection of turn boundaries in the user's speech. Even thogh the di culty of estimating
each turn-yielding cue will depend on the individual systemimplementation, a high-level
description of the turn-taking decision procedure could beas follows: At every silence longer
than a threshold (e.g., 50 milliseconds), the system estimas the presence of as many cues
as possible over the user's nal IPU. If the number of detecte cues is higher than some
prede ned threshold, the system may attempt to take the turn immediately; otherwise, it
may continue waiting. Note that some of the mentioned cues, gch as voice quality features
or pitch and intensity levels, may be precomputed at regularintervals while the user is still
speaking, thus reducing the processing time required at e&csilence.

Finally, IVR systems could benet from our results on backchannel-inviting cues to
re ne additional turn-taking decisions. For example, our results suggest how the system
should formulate its output to give the user an opportunity t o utter a backchannel (as a
way of ensuring that the user is paying attention), or how to determine when the system
should produce a backchannel as positive feedback to the useThe implementation of these

decisions should be analogous to the turn-yielding decisits described above.

18.2.3 Future work

Our study of turn-taking behavior opens numerous directiors for future research:

Future studies should seek novel turn-yielding and backchanel-inviting cues, aiming
at enriching our current models and providing IVR systems wih further information

to make more informed decisions. In particular, given our otar ndings for jitter,
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shimmer and noise-to-harmonics ratio, additional voice guality features appear to be
a promising option to explore, including relative average perturbation (RAP), soft

phonation index (SPI), and amplitude perturbation quotient (APQ).

The novel procedure presented in this thesis for the automat prediction of textual

completion presents some margin for improvement. Our SVM-ksed classi er achieved
an accuracy of 80%, while human agreement was 90.8%. New amaches could incor-
porate features capturing information from the previous turn by the other speaker,
which was available to the human labelers but not to the machne learning classi er.
Also, the sequential nature of this classi cation task might be better exploited by

more advanced graphical learning algorithms, such as Hidde Markov Models and

Conditional Random Fields.

We presented two simple procedures (one discrete, the oth@ontinuous) for determin-
ing the presence or absence of numeric turn-yielding cues. Hese procedures are based
on whether the values of two or three features are closer to th mean before holds
(H) or the mean before smooth switches §). This procedure could be re ned, for
example, by tting a Gaussian curve to the two groups (H and S) and subsequently
determining which model explains the observed values bette If the model for S is
better suited, the cue is present; otherwise, it is absent. The same consideration

applies to the procedure for determining backchannel-inwing cues.)

Our study implicitly assumed that all cues are equally important, contributing with
either 0 or 1 to the total cue count. Future research should eplore the assignment of
numeric weights to the di erent cues, depending on their rehtive importance: e.g., the
textual completion cue should be assigned a high weight, sire, as we showed, this cue
seems to work almost as a necessary condition for smooth swites. These weights
could also re ect the reliability of the procedures for automatically computing the
cues: e.g., the pitch slope features used for estimating thenal intonation are often
strongly a ected by pitch tracking errors, a good reason for decreasing the relative

weight of the nal intonation cue.

An examination of instances of overlapping speech in the cqus yielded preliminary
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results suggesting that both types of cues | turn-yielding a nd backchannel-inviting
| may be present before the nal part of conversational turns. Rather, they seem
to extend further back in the turn. This suggests that future work might examine, for
example, whether these cues extend over a longer portion ohée turn, starting low at
the turn onset, to gradually increase as turns approach potatial transition-relevance

places.

The turn-taking labeling scheme proposed in this thesis disnguishes three types
of interruptions. Future work could study these interrupti ons in detail, trying to

understand when and how they are likely to occur, as well as bth speakers' behavior
before, during and after interruptions. This knowledge woud be valuable for situations
in which an IVR system needs to interrupt the user, either beause it has already
collected the necessary information, or simply because it &s lost track of what the

user is saying.

While all speakers in the corpus presented seemingly homogeous strategies for dis-
playing turn-yielding cues, each speaker seemed to use tmebwn combination of
backchannel-inviting cues. Future research should thus sk an explanation for this
large degree of speaker variability, in an attempt to undersand when, how and why

speakers choose a particular set of cues.

18.3 A rmative cue words

In Part 111 of this thesis, we undertook a comprehensive studs of a rmative cue words, a

subset of cue phrases such askay, yeah or alright that may be utilized to convey as many
as ten di erent discourse/pragmatic functions, such as ackiowledging the interlocutor or
cueing the beginning of a new topic. Considering the high frguency of ACWs in task-
oriented dialogue, it is critical for IVR systems | most of wh ich have a task-oriented
domain | to model the usage of these words correctly, from both an understanding and a

generation perspective.
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18.3.1 Summary of ndings and novel contributions

A series of statistical experiments revealed a number of sig cant di erences in the produc-
tion of the various discourse/pragmatic functions of ACWSs. Final intonation and intensity
were the acoustic/prosodic features that showed the most miked di erences. For example,
backchannels tended to end in rising intonation; acknowledments and cue beginnings, in
falling intonation; cue beginnings tended to be produced wtih a high intensity; cue endings,
with a low intensity. We also found strong contextual di ere nces across functions, such as
the position of the word in its conversational turn, or whether the word was preceded or
followed by silence. Subsequently, a perception study of th uses of the wordokay signaled
such contextual information as the most salient cue for huma disambiguation of ACWSs.
Final intonation was the only acoustic/prosodic feature that correlated signi cantly with
human perception of the meaning ofokay.

We also explored the automatic classi cation of ACWSs, for which we conducted sev-
eral machine learning experiments with varying conditionsto simulate the settings of real
applications. We showed that the traditional distinction b etween sentential and discourse
uses of cue phrases is insu cient for ACWs, and presented twmovel alternative classi ca-
tion tasks: the detection of an acknowledgment function, aml the detection of a discourse
boundary function. Additionally, we found that the predict ive power of contextual infor-
mation was stronger than that of acoustic, prosodic and phoetic features extracted from
the target word itself. Still, the best performing models enployed information from all of
these sources.

Lastly, we investigated a new dimension of speaker entrain@nt | or, how conversational
partners tend to adapt their speech to each other's behaviar We introduced two novel
measures of entrainment related to the usage of high-frequey words, including ACWs,
and showed how they strongly and positively correlated with objective measures of task
success and dialogue coordination.

This is, to our knowledge, the most comprehensive study of armative cue words in
spoken dialogue. The large corpus on which it was conductedich in ACWs conveying
a wide range of discourse/pragmatic functions, allowed us d systematically investigate

various dimensions of these words, including their produdbn, perception, and automatic
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disambiguation, all of which represent novel contributions to the eld.

18.3.2 Impact

The ndings of our statistical experiments should aid designers of IVR systems in assigning
the appropriate acoustic and prosodic features to a rmative cue words, in order to un-
ambiguously convey the intended meaning. Moreover, the ragdts of our perception study
suggest that special attention should be paid to the contextin which these words occur,
given that contextual information may override the e ect of acoustic/prosodic properties of
the words themselves.

In the experiments on the automatic disambiguation of ACWs, we explored several
variations to simulate the settings of real applications | e .g. online vs. oine settings.
These tests were intended to aid future researchers and delepers in building e ective
classi ers of the discourse/pragmatic functions of ACWs, atask important not only for IVR
systems, but also for other speech processing applicationsuch as the automatic processing

of multi-party meetings.

18.3.3 Future work

When an IVR system is speaking and the user produces a short tdrance, it is critical
for the system to correctly determine whether the short utterance is a backchannel |
in which case the system is encouraged to continue holding #h turn, or a turn-taking
attempt | in which case the system should yield the turn to the user. The machine
learning classi ers we trained for this task failed to signicantly outperform the majority-
class baseline. Among the plausible reasons for this, are ¢hambiguity in some conditions
between the acknowledgment/agreement and backchannel fugtions, and the similarities in
the production of those two functions for some high-frequeny words such asmm-hm and
uh-huh A possible direction for future research, then, consistsn seeking novel approaches
to this crucial classi cation task.

Future research should also pursue the interesting result®n speaker entrainment of
high-frequency words. In particular, it should try to ident ify any causal relations between

entrainment on one side, and task success and/or dialogue oadination on the other. Such
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ndings could have a strong impact on the development of IVR g/stems, providing either

guidelines to enhance their quality, or novel evaluation méerics.

18.4 Epilogue

Altogether, in this thesis we proposed a number of models ofariation of human speech
in task-oriented dialogue, along with several plausible diections in which to enrich them
in future research. If these models can be successfully inguorated into IVR systems and
other speech processing applications, it might be possibl® improve their performance and
user satisfaction levels, thus getting us one step closer tthe long-term goal of e ectively

emulating human behavior.
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Appendix A

The ToBI Labeling Conventions

The ToBI system (Beckman and Hirschberg, 1994; Pitrelli et d., 1994) consists of an-
notations at four time-linked levels of analysis: anorthographic tier of time-aligned
words; abreak index tier indicating degrees of juncture between words, from 0 “no war
boundary' to 4 “full intonational phrase boundary', which derives from Price et al. (1991);
a tonal tier , where pitch accents, phrase accents and boundary tones dgging targets
in the FO contour de ne intonational phrases, following Pierrehumbert's (1980) scheme for
describing SAE; and amiscellaneous tier , in which phenomena such as dis uencies may
be optionally marked.

Break indices de ne two levels of phrasing: level 3 correspws to Pierrehumbert's
intermediate phrase  and level 4, Pierrehumbert'sintonational phrase , With an asso-
ciated tonal tier that describes the phrase accents and bouary tones for each level. Level
4 phrases consist of one or more level 3 phrases, plus a highlow boundary tone (H% or
L% ) at the right edge of the phrase. Level 3 phrases consist of @or more pitch accents,
aligned with the stressed syllable of lexical items, plus ghrase accent , which also may
be high (H-) or low (L-). A standard declarative contour, e.g., ends in a low phraseaccent
and low boundary tone, and is represented byL-L% ; a standard yes-no question contour
ends inH-H% . These are illustrated in Figure A.1.

Di erences among ToBI break indices can be associated with ariation in FO, phrase-
final lengthening (a lengthening of the syllable preceding the juncture poin), glottal-

ization (‘creaky voice') over the last syllable or syllables preceding the break, and some
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(a) (b)

Figure A.1: (a) A H* L-L% contour; (b) A L* H-H% contour.

amount of pause. Higher number indices tend to correspond t@reater evidence of these

phenomena.

Pitch accents make words intonationally prominent and are ralized by increased FO
height, loudness, and duration of accented syllables. A gen word may be accented or
deaccented and, if accented, may bear di erent tones, or di erent degrees of prominence,
with respect to other words. The most prominent accent in an ntermediate phrase is
called the phrase'snuclear accent  or nuclear stress . Five types of pitch accent are
distinguished in the ToBI system for American English: two simple accentsH* and L* , and
three complex onesl*+H , L+H* |, and H+!H* . The asterisk indicates which tone of the

accent is aligned with the stressable syllable of the lexidaitem bearing the accent. Some
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pitch accents may bedownstepped , such that the pitch range of the accent is compressed
in comparison to a non-downstepped accent. Downsteps are diicated by the "' diacritic.

Figure A.2 shows an example of a downstepped contour bearinigvo downstepped accents.

Figure A.2: A H* IH* IH* L-L% contour.



170 APPENDIX A. THE TOBI LABELING CONVENTIONS



APPENDIX B. THE COLUMBIA GAMES CORPUS 171

Appendix B

The Columbia Games Corpus

In Part | of this thesis, we described the general rules and caracteristics of the computer
games prepared for the collection of the Columbia Games Corgs. In this Appendix we
present the detailed instructions given to the subjects, the hypotheses each game was de-
signed to test, and the full sets of images in the same order #y were presented to the

subjects.

B.1 Session script and instructions screens

Subjects were read the following script by the experimentetat the beginning of the session.

Actions performed by the experimenter are shown in bold typéace.

Today we would like you to participate in a communications experiment, which
will involve playing an electronic game with a partner. We will be recording
your comments to one another while you play the game. You willreceive online
and oral instructions on how to play the game and then will be gven a chance
to practice before the actual experiment begins. Feel freed ask us questions at

any time.
First, we would like to ask you to sign this consent form.
[Give consent forms to subjects.]

Now, we would like to t you with recording equipment and to te st some levels.
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[Set up recording equipment.]

To set our recording levels and to get you accustomed to the ording envi-
ronment, we would like you to take turns asking some biograpkcal questions of
your partner. Here is the list of questions. Please alternat, so that each of you
asks your partner the question and gets an answer before mawj on to the next
question.
[Show list of questions.]
1. What is your name and why were you given your rst name? Midde name?
2. Where did you grow up and did you like the place?

3. Who is your favorite relative and why?

4. What is the best movie you have seen recently, and can you g a brief summary

of the plot?
5. Of all the things you do at least once a week, which do you lik doing the least?

6. If you could have any occupation in the world, what would yau choose and why?

Now, we'll start the games. Speak calmly and take your time. There is no

rush. This are not timed games.

[Start games.]

The complete instructions screens given to the subjects fothe rst part of the Cards Game
are shown in Figure B.1; for the second part of the Cards Gamein Figures B.2 and B.3; and
for the Objects Game, in Figure B.5. Additionally, for the second part of the Cards Game,
subjects were given a quick reference sheet, shown in Figu4, containing a summary of

the game instructions, which they could check at any time duing the game.
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Figure B.1: Instructions of the rst part of the Cards Game.

Figure B.2: Instructions of the second part of the Cards Game Continued in Figure B.3.
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Figure B.3: Instructions of the second part of the Cards Game Continued from Fig. B.2.
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Figure B.4: Reference sheet for the second part of the Cards @ne.
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Figure B.5: Instructions of the Objects Game.
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B.2 Hypotheses tested

Inthe rstinstance of the Cards game that subjects were asked to play, we systertiaally
varied the number of cards between occurrences of the targdmages: from 0 to 7 cards.
This design was intended to test the hypothesis that the prodiction of given information
changes depending on the recency of preceding mentions. Iragicular, when referring to a
given entity, is the choice between deaccentuation and a downstgged pitch accent guided
by the distance to the entity's previous reference?

The second instance of the Cards game was designed to test the hypothesis that, th
more complex (or heavier) a noun phrase, and the higher its nmber of given items, then
the more likely it is to be produced with a downstepped contou. For this, subjects were
shown cards containing varying numbers of images, with thagiven/new status of the images
also varied systematically. For example, based on prelimiary tests of the Cards game, we
expected subjects to describe the rst card in Figure B.6 as\the rhinoceros with the owl
and the ruler", and the second card asthe rhinoceros with the owl, the ear and the ruler".
Then the question we want to answer is, given that the second R is heavier and has more

givenitems, is it more likely to be produced with a downstepped cotour than the rst NP?

Figure B.6: Sample cards from the second and third Cards game

We designed thethird instance of the Cards game to study the e ect of grammatical
function and surface position on the production of given information. For example, we
expected subjects to describe the third card in Figure B.6 asthe mime with the onion",
and the fourth card as \the onion with the Oreo cookie". Then our question is, since the
grammatical function of the onion shifts from object in the rst mention to subject in the

second, and its surface position from phrase- nal to phrasenitial position, how will its
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second mention be produced? Will it bear a high pitch accent,a downstepped accent, or

will it be deaccented?

Figure B.7: Sample screen from the Objects Game.

Finally, the Objects game too was designed to study the e ectof grammatical function
on the production of giveninformation, although in a di erent way. In this case, we expected
target images to be produced in subject position, and surronding images in object position.
For example, the location of the airplane in Figure B.7 couldbe described asThe airplane
is between the lightbulb and the pineapplevhere the airplane appears in subject position,

while the lightbulb and the pineappleare in object position.
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B.3 Images of the Cards Games

B.3.1 Cards Game Number 1

Figure B.8: Cards Game 1, rst part, Describer's Deck

Figure B.9: Cards Game 1, second part, Player A's Board

Figure B.10: Cards Game 1, second part, Player B's Board

179
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B.3.2 Cards Game Number 2

Figure B.11: Cards Game 2, rst part, Describer's Deck

Figure B.12: Cards Game 2, second part, Player A's Board

Figure B.13: Cards Game 2, second part, Player B's Board
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B.3.3 Cards Game Number 3

Figure B.14: Cards Game 3, rst part, Describer's Deck

Figure B.15: Cards Game 3, second part, Player A's Board

Figure B.16: Cards Game 3, second part, Player B's Board
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B.4 Images of the Objects Game

Figure B.17: Objects Game 1, Describer's Board.

Target objects (from left to right and top to bottom): mime, | awnmower, ear, nail.

Figure B.18: Objects Game 2, Describer's Board

Target objects: yellow moon, blue moon, lemon, eye.
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Figure B.19: Objects Game 3, Describer's Board

Target objects: lime, yellow mermaid, onion, iron, M&M, whale.
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B.5 Questions

Two trained annotators identi ed all questions in the Objects portion of the Games Corpus
using a simple de nition: A question is an “utterance that requests an answer' Ad-
ditionally, the same annotators identi ed all question-like  (QL) utterances, de ned as
utterances that do not t our de nition of questions, but tha t satisfy the following two
conditions: a) there is something in the utterance that is phusibly questionable from the
context, and b) the utterance allows, rather than requests,an answer.

Subsequently, two di erent trained annotators classi ed each question (not including
QL utterances) according to their form and function, as shown in Tables B.1 and B.2,
respectively. There are 5 types and 10 subtypes of questiorofms, and 4 types and 13

subtypes of question functions. The inter-labeler agreems for the question form labeling

Type Subtype Example

Yes-no question Declarative The card has a blue moon on it?
Canonical/full | Is the card blinking?
Reduced You see that?

Wh-questions Declarative You're putting the lemon where?
Canonical How many cards are there?
Reduced A what?

Alternative question | { Or is it more blue than green?

Tag question Canonical/full | You like Mac computers, don't you?
Reduced I'm going to look at that top card, okay?

Fragment { A Lion?

Table B.1: Question form types

task is substantial: = 0:719 when considering all 10 subtypes, and = 0:815 when using
only the 5 main types. For the question function labeling tak, the inter-labeler agreement
is low: =0:190 when considering all 13 subcategories, and= 0:231 when using only the

4 main categories.



APPENDIX B. THE COLUMBIA GAMES CORPUS

185

Type Subtype Example
Action Indirect Why don't you go ahead?
request Direct Go ahead and try that card, okay?
Clari cation | Reformulation A: Find the card with the dog.
/summarization B: The yellow dog?
/speci cation
Suggest possible A: | like Murakami's style, he's sort of a...
correction or intention B: Surrealist?
Con rmation You've got it, right?
Signal non-understanding: | A: Excuse me! I'm looking for a bathroom.
Acoustic B: Pardon?
Signal non-understanding: | A: Over there.
Semantic/referential B: Where is “there'?
Rhetorical Agreement A: Do you want to do that then?
qguestion B: Sure, why not?
Point A: He married his adopted daughter!
B: Who would do such a thing?
Backchannel A: She totally had it out with him!
B: Oh, really?
Information | Factual What card are you looking at?
request Comment What do you think?
Suggest Which card do you think we should match?

Table B.2: Question function types
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Appendix C

ACW Labeling Guidelines

These guidelines for labeling the discourse/pragmatic funtions of a rmative cue words
were developed by Julia Hirschberg, Stefan Benus, AgustnGravano and Michael Mulley at

Columbia University.

Classi cation scheme

Most of the labels are de ned usingokay, but the de nitions hold for all of these words:
alright, gotcha huh, mm-hm, okay, right, uh-huh yeah yep, yes yup. If you really have no

clue about the function of a word, label it as ?.

[Mod] Literal Modi ers: In this case the words are used as modi ers. Examples:
\I think that's okay ."
\It's right between the mermaid and the car."

\ Yeah, that's right ."

[Ack] Acknowledge/Agreement: The function of okay that indicates \I believe what
you said", and/or \I agree with what you say". This label shou Id also be used forokay
after another okay or after an evaluative comment like \Great" or \Fine" in its r ole as an
acknowledgment. Examples:

A: Do you have a blue moon?
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B: Yeah.
A: Then move it to the left of the yellow mermaid.

B: Okay, gotcha. Let's see... (Here, both okay and gotcha are labeledAck .)

[CBeg] Cue Beginning: The function of okay that marks a new segment of a discourse

or a new topic. Test: could this use of okay be replaced by \Now?

[PBeg] Pivot Beginning: (Ack+CBeg) When okay functions as both a cue word and
as an Acknowledge/Agreement. Test: Can okay be replaced by®kay now" with the same

pragmatic meaning?

[CENnd] Cue Ending: The function of okay that marks the end of a current segment of

a discourse or a current topic. Example: \So that's done.Okay ."

[PENnd] Pivot Ending: (Ack+CEnd) When okay functions as both a cue word and as

an Acknowledge/Agreement, but ends a discourse segment.

[BC] Backchannel: The function of okay in response to another speaker's utterance that

indicates only \I'm still here / | hear you and please continue”.

[Stl] Stall:  Okay used to stall for time while keeping the oor. Test: Can okay be replaced
by an elongated \Um" or \Uh" with the same pragmatic meaning? \So | yeah | think we

should go together."

[ChK] Check:  Okay used with the meaning \Is that okay?" or \Is everything okay? ".

For example, \I'm stopping now, okay ?"

[BTsk] Back from a task: \I've just nished what | was doing and I'm back". Typical
case: one subject spends some time thinking, and then sigrsa/he is ready to continue the

discourse.
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Special cases

\okay so" / \okay now" / \okay then" / etc., where both words are uttered together,
okay seems to conveyAck , and so/ now / then seems to conveyCBeg. Since we

do not label words like so, now or then, we label okay as PBeg .

If you encounter a rapid sequence of the same word several ties in a row, all of them
uttered in one \burst" of breath, mark only the rst one the co rresponding label, and
label the others with \?". Example: \ okay yeah yeah yeahshould be labeled as:

\ okay:Ack yeah:Ack yeah:? yeah?".
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Appendix D

Turn-taking Labeling Guidelines

These guidelines for labeling turn-taking phenomena were eveloped by Julia Hirschberg,
Stefan Benus, Agustn Gravano, Hector Chavez and Enriqu e Henestroza at Columbia Uni-

versity, and were based on the labeling scheme proposed in Bitie (1982).

Turn exchanges, ‘turns' tier

Label only the turn intervals inside tasks (tasks are markedby intervals that start with

\Images:" in the “tasks' tier).

For each turn interval by S2, where S1 is the other speaker, lael S2's turn interval as

follows:

(1) Backchannels were identi ed by three annotators for the a rmative cue words project,

who were provided with the following de nition:

Backchannel: The function of “okay' [or “alright’, ‘'mm-hm', “yeah', etc.] in
response to another speaker's utterance that indicates opl\I'm still here / |

hear you and please continue”.

When a simple majority of annotators (i.e., at least two out of three) considered an utterance

to be a backchannel, it was labeledBC or BC _O.

(2) We use Beattie's informal de nition of utterance completeness: \Completeness was
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S2 intends to
take the oor?®

H
yes H no
'QH
Simultaneous speech present? Simultaneous speech present?
H H
yes H no yes H no
'QH I[?H
S2 is successful? S1's utterance Backchannel Backchannel
yes Hy no compleﬁe’:‘z) with overlap (BC)
H yes H o (BC _0)
S1's utterance Butting-in H _
complete®) (BI) Sr_nooth Pause interruption
yes H Ro switch (S) (PD
H
Overlap Interruption
O) 0

judged intuitively, taking into account the intonation, sy ntax, and meaning of the utterance"
(Beattie, 1982, page 100).

Special cases

We identi ed three common cases in which no turn exchange oaqs, and the corresponding

turn interval receives a special labelX[1-3] .

Task beginnings: If a turn interval begins a new task, then label it X1 .

Continuation after a backchannel: If a turn interval t is a continuation from the
previous turn by the same speaker after aBC or BC _O, then label it X2 _O if t

overlaps the backchannel, orX2 if not.

Simultaneous start:  If two turn intervals begin almost simultaneously | formall v,
within 210 ms of each other (Fry, 1975) | then the speakers are most probably

reacting to the preceding turn interval:
At x Ay
y Bi1 0<jy Xj< 210ms

In the gure, A, and B1 occur most likely in response toA;. Thus, B; should be

labeled with respect to A1 (not As); A, should be labeledX3 .
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Notes

The gure below shows a frequent pattern consisting of a comfete short utterance
(B1) fully contained within a longer utterance (A1) by the other speaker, such that

the oor is briey shared by both speakers, andA1 is not disrupted by B1. In such
A
Bi1

cases, the most appropriate label foB 1, according to our labeling scheme, i€Q; it is

neither | nor Bl because both utterances are complete.

Miscellaneous tier

Collaborative contributions

If a speaker completes, or attempts to complete, an utterane from their interlocutor, as if

trying to help them, add a "Help' label in the misc tier.

Other

Mark in the misc tier any other situation not contemplated in these guidelines.
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Appendix E

Turn-Taking Results Per Speaker

E.1 Evidence of turn-yielding cues per speaker

Abs pitch slope Syllables per sec| Phonemes per sec
Speaker| S H p S H p S H p
101 208.0 1346 0 |510 4.02 0| 1145 8.69 0
102 2378 1672 0 |733 594 0|16.76 1235 O
103 2243 1579 0 |500 428 0| 1157 9.60 0
104 180.4 948 0.02 477 412 0| 1115 9.71 0
105 2226 1618 0 |575 499 01260 1087 O
106 2950 2278 0 |527 491 01221 1088 O
107 154.1 105.0 0.03 5.04 4.28 0| 11.06 8.78 0
108 2157 1555 0.0 536 399 0| 1266 9.00 0
109 210.2 1216 0 |550 408 01283 914 O

110 255.8 209.1 0.0 540 4.93 0| 12.28 11.42 0.04
111 2148 1635 0 |5.16 428 0| 1168 9.39 0
112 188.8 1154 0 | 485 442 0| 1149 9.68 0
113 2420 177.4 0.03 500 449 01162 984 O

Table E.1: Absolute pitch slope over the nal 300ms of the IPU, and syllables and
phonemes per second over the whole IPU, for IPUs precedin§ and H. The p-values
correspond toanova tests between the two groups.
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Mean intensity Mean pitch Number of words
Speaker| S H p S H p S H p

101 64.3 64.7 0.60| 110.1 116.1 0.07 6.51 4.90 0
102 69.3 724 0| 1194 1343 0 |544 3.79 0
103 67.3 70.6 0 | 131.1 1343 0.22 6.42 3.98 0
104 725 74.8 0| 985 999 0.34/ 463 3.71 0.01
105 65.1 67.6 0 | 1156 1223 0 | 494 3.47 0
106 63.5 66.7 0 | 113.2 1122 0.55 6.79 4.91 0
107 59.9 64.8 0| 851 906 0| 532 3.53 0
108 67.1 684 0.02] 101.1 104.1 0.11 6.58 4.97 0
109 60.0 63.3 0| 954 1011 0.01 453 3.58 0
110 63.5 65.4 0 | 120.3 1271 0 | 487 3.52 0
111 64.6 66.4 0 | 112.3 1126 0.85 6.76 4.38 0
112 63.5 66.5 0 | 1176 1268 0 | 5.78 3.54 0
113 64.3 66.3 0 | 1245 127.3 0.24 5.78 3.46 0

Table E.2: Mean intensity and pitch levels over the nal 500ms of the IPU, and number of
words in the entire IPU, for IPUs preceding S and H.

Jitter Shimmer NHR
Speaker| S H p S H p S H p
101 0.020 0.011 0 |0.1208 0.073 0 |0.324 0188 O
102 0.015 0.011 0 |0.120 0.091 0 |0.314 0.200 O
103 0.011 0.007 0 |0.090 0071 0 |0.163 0.116 O
104 0.017 0012 0 |0.083 0.066 O |0.145 0.096 O
105 0.013 0.010 O |0.104 0081 0 |0.18 0.120 O
106 0.021 0.016 0 |0.127 0101 O 0326 0.261 O
107 0.020 0.015 0 |0.110 0.091 0 0307 019 O
108 0.016 0.014 0.014 0.088 0.076 0 | 0.243 0.189 O
109 0.015 0.010 0 |0.091 0065 0 |0.211 0.121 O
110 0.012 0011 0 |0.203 0.087 O |0.177 0.147 O
111 0.013 0.010 O |0.089 0.077 0 |0.155 0.127 O
112 0.011 0.007 0 |0.095 0069 0 |0.160 0.095 O
113 0.014 0.012 0.27, 0.099 0.089 0.05 0.202 0.163 O

Table E.3: Jitter, shimmer and noise-to-harmonics ratio, @mputed over the nal 500ms of
the IPU, for IPUs preceding S and H.
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Speaker ID S H
101 104 (77.6%)| 233 (55.9%)
102 196 (77.8%)| 244 (46.5%)
103 244 (85.9%)| 346 (57.0%)
104 95 (75.4%)| 193 (53.9%)
105 337 (88.5%)| 371 (51.6%)
106 314 (80.3%)| 486 (51.8%)
107 214 (85.3%)| 348 (46.6%)
108 144 (77.4%)| 402 (60.9%)
109 130 (71.4%)| 357 (48.0%)
110 212 (83.5%)| 455 (53.5%)
111 306 (82.9%)| 323 (51.4%)
112 227 (81.7%)| 283 (54.3%)
113 126 (79.7%)| 231 (56.8%)
Total 2649 (81.6%)| 4272 (52.6%)

197

Table E.4: Number and proportion of complete IPUs precedingS and H per speaker, as

predicted by our SVM-based automatic classi er.

E.2 Evidence of backchannel-inviting cues per speaker

Pitch slope Mean intensity Mean pitch
Speaker| S H p S H p S H p
102 208.2 291 0 |713 724 0.48 1406 134.3 0.34
103 173.7 588 0| 726 70.6 0.09 138.3 134.3 048
105 163.1 -8.8 0| 685 67.6 0.13] 1247 1223 043
106 153.5 45.0 0.02 68.9 66.7 0 | 115.8 112.2 0.29
108 109.7 56.1 0.28 71.3 68.4 0.01] 105.0 104.1 0.80
110 2179 -49 0| 653 654 093] 131.8 127.1 0.33
111 67.0 12.2 0.09| 70.3 66.4 0| 1298 1126 O
112 217.3 33 0| 689 665 0| 1440 1268 O
113 119.7 6.4 0.01] 69.7 66.3 0| 1413 1273 O

Table E.5: Pitch slope over the nal 300ms of the IPU, and meanintensity and pitch

levels over the nal 500ms of the IPU, for IPUs precedingBC and H. The p-values

correspond toanova tests between the two groups.
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Number of words NHR

Speaker| S H p S H p
102 4.654 3.790 0.1 0.207 0.200 0.84
103 6.612 3975 0 |0.075 0.116 0.04
105 5.050 3466 0 | 0.087 0.120 O
106 7.169 4912 0 | 0.210 0.261 0.01
108 7.727 4965 0 | 0.176 0.189 0.57
110 4638 3.524 0.02 0.080 0.147 O
111 7294 4382 0 |0.074 0127 O
112 5400 3539 0 | 0.058 0.095 0.01
113 6.100 3459 0 [0.086 0.163 O

Table E.6: Number of words in the entire IPU, and noise-to-hamonics ratio over the nal
500ms of the IPU, for IPUs precedingBC and H.

102 103 105 106 108
NN NN 7 | DT NN 27 | DT NN 39 | DTNN 25 | DTNN 16
DT NN 7 | JINN 6 | JJNN 20 | NNNN 10 | DT JJ 2
PRPVBP 2 |VBZVBG 5 | NN NN 10 | IN NN 9 | # NN 2
IN NN 2 | DT JJ 2 | DTNNP 3 | JJNN 6 | IN NN 1
NNS NN 2 | UH NN 1| #NN 3 |DTY 3 | NN VB 1
JJ NN 2 | INPRP 1 | NNIN 1 | #NN 3 |INPRP 1
#IN 1 | CD NNS 1|#RB 1 |RBVB 1 | NNNN 1
Total 26 | Total 49 | Total 80 | Total 65 | Total 33
110 111 112 113

DT NN 18 | DT NN 35 | DT NN 21 | DT NN 20

JJ NN 8 | JJ NN 17 | JJ NN 14 | JJNN 8

NN NN 7 | NN NN 8 | NN NN 11 | # NN 7

# NN 3 | NN VBZ 3 | # NN 5 | NN NN 5

NNNNS 2| INDT 2 | INPRP 3 | NN RB 2

DT JJ 1 | NNRB 2| DTNNP 1 |[DTNNP 1

CDNNS 1| NNSVBP 2 |DTCD 1| DTJ 1

Total 47 | Total 85 | Total 65 | Total 60

Table E.7: Counts of the most frequent nal POS bigrams in IPUs precedingBC ,
per speaker.
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Appendix F

ACWSs Results By Word

alright mm-hm okay

Ack CBeg | Ack BC | Ack BC CBeg PEnd PBeg
H-H% 5 0| 21 145, 38 24 1 5 0
['H-L% 9 3| 12 76| 163 13 64 23 9
L-H% 8 2 8 51| 121 57 17 9 3
L-L% 29 31 1 17| 303 13 132 40 29

other 8 4 1 31118 1 70 14 22

right uh-huh yeah
Ack Chk Mod | Ack BC | Ack BC PEnd
H-H% 0 19 42 6 18 3 4 0
['H-L% 8 4 30 3 25| 59 8 0
L-H% 4 8 35 5 37| 90 31 2
L-L% | 43 2 131 1 11| 257 12 9
other 5 1 363 0 0| 137 1 1

Table F.1: ToBI phrase accents and boundary tones per ACW. Tle “other' category

consists of cases with no phrase accent and/or boundary tonpresent at the target word.



200 APPENDIX F. ACWS RESULTS BY WORD

IPU initial IPU medial IPU nal Single-word IPU

alright Total 63 | Total 6 | Total 10 | Total 77
Ack 30 | Ack 1| Ack 6 | Ack 39

BTsk 1 | CBeg 4 | FEnd 1 | BTsk 4

CBeg 32 | Mod 1 | Mod 3 | CBeg 25

FEnd 9

okay Total 655 | Total 74 | Total 154 | Total 1224
Ack 248 | Ack 41 | Ack 113 | Ack 690

BTsk 1 | CBeg 20 | BC 1| BC 119

CBeg 365 | Mod 5 | CBeg 11 | BTsk 27

Chk 1 | PBeg 4 | CEnd 1 | CBeg 147

PBeg 39 | st 4 | FEnd 12 | CEnd 3

Sl 1 Mod 12 | Chk 4

PBeg 1| FEnd 206

St 3 | Mod 1

PBeg 20

St 7

yeah Total 251 | Total 60 | Total 70 | Total 449
Ack 251 | Ack 60 | Ack 68 | Ack 375

FEnd 2 | BC 58

FEnd 16

mm-hm | Total 6 | Total 0 | Total 1 | Total 450
Ack 5 Ack 1 | Ack 52

BC 1 BC 394

FEnd 4

uh-huh | Total 1 | Total 0 | Total 2 | Total 114
Ack 1 Ack 2 | Ack 13

BC 101

right Total 63 | Total 485 | Total 573 | Total 71
Ack 11 | Ack 7 | Ack 11 | Ack 45

Mod 52 | Chk 7 | Chk 36 | Chk 6

Mod 471 | Mod 526 | Mod 20

Table F.2: Distribution of ACWs and discourse/pragmatic fu nctions per position in the
inter-pausal unit (IPU). See Figure 13.1 on page 116.
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Turn initial Turn medial Turn nal Single-word turn
alright Total 88 | Total 35 | Total 8 | Total 25
Ack 39 | Ack 15 | Ack 4 | Ack 18
BTsk 1 | BTsk 1 | BTsk 1 | BTsk 2
CBeg 45 | CBeg 16 | FEnd 2 | FEnd 5

FEnd 3 | Mod 3 | Mod 1
okay Total 985 | Total 210 | Total 139 | Total 773
Ack 436 | Ack 105 | Ack 102 | Ack 449
BTsk 3 | BC 1| BC 1| BC 118
CBeg 471 | BTsk 1 | BTsk 3 | BTsk 21
Chk 1 | CBeg 64 | CBeg 3 | CBeg 5
FEnd 23 | CEnd 1| CEnd 2 | CEnd 1
PBeg 50 | Chk 1 | Chk 1 | Chk 2
Stl 1| FEnd 3 | FEnd 19 | FEnd 173
Mod 9 | Mod 8 | Mod 1

PBeg 13 PBeg

Stl 12 St 2
yeah Total 269 | Total 118 | Total 71 | Total 372
Ack 268 | Ack 118 | Ack 67 | Ack 301
FEnd 1 FEnd 4 | BC 58
FEnd 13
mm-hm | Total 12 | Total 0 | Total 1 | Total 444
Ack 9 Ack 1 | Ack 48
BC 2 BC 393
FEnd 1 FEnd 3
uh-huh | Total 4 | Total 0 | Total 4 | Total 109
Ack 2 Ack 3 | Ack 11
BC 2 BC 1| BC 98
right Total 31 | Total 639 | Total 485 | Total 37
Ack 19 | Ack 10 | Ack 13 | Ack 32
Mod 12 | Chk 11 | Chk 33 | Chk 5

Mod 618 | Mod 439

Table F.3: Distribution of ACWs and discourse/pragmatic fu nctions per position in the
conversational turn. See Figure 13.2 on page 117.
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Appendix G

Instructions for the Perception
Study of Okay

=

In this study, you will be given a series of single-word audips, one per screen. Fg
each clip you will be asked to match the word you hear with th@shappropriate

category for that word.

=

Before viewing the category descriptions and further iostions, please check you

audio now by clicking on the speaker icon below.

Check the audio playback capability and the volume settingdilicking on the speaker

icon above. Ask the experimenter for assistance.

Figure G.1: First instructions screen for the rst part (iso lated condition) of the

perception study of okay.
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APPENDIX G.

INSTRUCTIONS FOR THE PERCEPTION STUDY OF OKAY

On each screen you will be presented with an audio clip comagi the word \okay".

You will be asked to categorize it, choosing from the follogricategories. Please reaq

the descriptions and examples for each category below @hisscriptions are also given

to you as a handout):

Acknowledge/Agreement:
The function of okay that in-
dicates \I believe what you
said" and/or \I agree with
what you say".

Example:

A: but pay attention to the
zebra that's shorter than the
rest of the herd

B: okay | see the little guy
Example:

A: be sure to buy some extr
milk on your way back

B: okay don't worry about it

Backchannel:
The function of okay in re-

sponse to another speaker

\I'm still here" or \l hear you
and please continue”.
Example:

A: to check classes | went t
the Columbia homepage

B: okay

A: then clicked on students
a Example:

A: and what | thought we
might do

B: okay

A: was to go to the store

utterance that indicates only

Cue Beginning:
The function of okay that
smarks a new segment of a dig
course or a new topic. Thig
use ofokay could be replaced
by now.
Example:
b A: okay moving on to the
next thing on our agenda
Example:
A: I'm ready to go
B: greatokay let's get started

Figure G.2: Second instructions screen for the rst part (isolated condition) of the

perception study of okay.
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Summing up, on each screen you will listen to an \okay" and nhehoose a category
for that word. You can click on the speaker icon to repeat therdr as many times as
you like, and refer to the handout to help you choose the caiggfor that word. If you
are unsure about the category, choose the one that you thimkthe most appropriate

You will only be able to choose one category out of three.

You will also be asked to rate how con dent you are about theoa® you made (High
Medium, Low). After you have chosen the category and havedatbd your con dence
level, press "NEXT' to move on to the next question. You wilitibe able to go back to

a previous question, but you should not worry about answgrnquestion \incorrectly".

However, if you think you chose an option by mistake and hiEXNI" accidentally, please

let the experimenter know.

This is the rst part of a two-part study. If at any point you ned to take a break,
or if you need assistance, please nish the current screed @itk "PAUSE' instead of
"NEXT".

Figure G.3: Third instructions screen for the rst part (iso lated condition) of the

perception study of okay.
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Figure G.4: Sample screen of the rst part (isolated condition) of the perception study
of okay.

Note: The con dence rates were not used in the studies preséed in this thesis.
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—

In this part of the study, you will be given a series of speeegnsents, each segmer
containing part of a conversation. A text will indicate a @&t \okay" in each segment,
and you will be asked to match the target \okay" you hear witlné most appropriate

category for that word.

=

Before reviewing the category descriptions and furthertrimstions, please check you

audio now by clicking on the speaker icon below.

Check the audio playback capability and the volume settingdilicking on the speaker

icon above. Ask the experimenter for assistance.

Figure G.5: First instructions screen for the second part (ontextualized condition) of the

perception study of okay.
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INSTRUCTIONS FOR THE PERCEPTION STUDY OF OKAY

On each screen you will be presented with an audio clip conngi part of a conversation

between two people. A text will indicate a target \okay". Yowill be asked to categorize

the target \okay", choosing from the same categories as irthrevious part of the study.

Please review the descriptions and examples for each catego

Acknowledge/Agreement:

The function of okay that in-

dicates \I believe what you

said" and/or \I agree with
what you say".
Example:

A: but pay attention to the

zebra that's shorter than the

rest of the herd

B: okay | see the little guy
Example:

A: be sure to buy some extr
milk on your way back

B: okay don't worry about it

Backchannel:
The function of okay in re-

sponse to another speaker

\I'm still here" or \l hear you
and please continue”.
Example:

A: to check classes | went t
the Columbia homepage

B: okay

A: then clicked on students
a Example:

A: and what | thought we
might do

B: okay

A: was to go to the store

utterance that indicates only

Cue Beginning:
The function of okay that
smarks a new segment of a dig
course or a new topic. Thig
use ofokay could be replaced
by now.
Example:
b A: okay moving on to the
next thing on our agenda
Example:
A: I'm ready to go
B: greatokay let's get started

Figure G.6: Second instructions screen for the second paricontextualized condition) of

the perception study of okay.
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Summing up, the instructions in this part are similar to thees in the rst part. The
only di erence is, now on each screen you will listen to partacconversation containing

a target \okay", which will be bold and underlined in a textpghat you can identify

D
—

it (for example: \I think that's okay"). You have to choose a category for the targ

\okay".

Please remember: You can play the audio clip as many timesoaslike, and refer to
the handout to help you choose the category for that word. dfluyare unsure about the

category, choose the one that you think is the most approfeia

However, if you think you chose an option by mistake and hiEXXI" accidentally, pleass

let the experimenter know.

This is the last part of a two-part study. If at any point you ed to take a break,
or if you need assistance, please nish the current screed @itk "PAUSE' instead of

"NEXT".

Figure G.7: Third instructions screen for the second part (ontextualized condition) of the

perception study of okay.
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Figure G.8: Sample screen of the second part (contextualizecondition) of the perception
study of okay.

Note: The con dence rates were not used in the studies preséed in this thesis.
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