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A TRANSFER LEARNING APPROACH FOR
PRONUNCIATION SCORING

Evaluating a student’s pronunciation is a key aspect of language education. This is
commonly done by human teachers, but can also be done by computers, in which
case it is called computer aided pronunciation training (CAPT). CAPT tools have
become increasingly popular in recent years, allowing students to improve their pro-
nunciation through constant feedback. Automatic pronunciation assessment can be
done at different levels, such as phrase, word or phone-level; the last one being the
most granular and useful. At that level, automatic pronunciation is a challenging
task, with performance far from that of human annotators. Standard systems gen-
erate a score for each phone in a phrase using models trained for automatic speech
recognition (ASR), a different but related task, using recordings of native speakers
only. However, better performance has been shown when using systems that are
trained specifically for the task of interest using non-native data labelled at phone
level as correctly or incorrectly pronounced. Yet, such systems face the challenge
that datasets labelled for this task are scarce and usually small.

In this work, we present a transfer learning-based approach that leverages a
neural network model trained for ASR on native data, adapting it for the task of
English phone-level pronunciation scoring by replacing the model’s output layer and
re-training it with non-native data. We train the model on EpaDB, a database of
English phrases read by Argentinians designed specifically for pronunciation scoring
research. We analyze the effect of several design choices and compare the perfor-
mance with a state-of-the-art goodness of pronunciation (GOP) system. Our final
system is 20% better than the GOP system on EpaDB, for a cost function that

prioritizes low rates of unnecessary corrections.

Keywords: Computer Assisted Language Learning, Phone level Pronunciation

Scoring, Goodness of Pronunciation, Transfer Learning.
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1. INTRODUCTION

1.1 Problem description

In recent years, globalization has made language learning more important than ever.
Because of this, as well as the advancements in information technology, computer
assisted language learning (CALL) has started to become more widespread. CALL
systems allow students to practice and progress in their efforts to acquire a sec-
ond language without requiring a human teacher guiding them and providing them
with continuous personalized feedback [I]. Computer aided pronunciation training
(CAPT) systems are a family of CALL systems that are used to improve pronunci-
ation, which is otherwise particularly difficult to practice without a personal tutor.
These systems assess pronunciation quality for a whole phrase, each word or each
phone in an utterance. Phone-level pronunciation scoring is the most granular and
challenging task, since the amount of data used to judge each segment is smaller.
However, these systems may be the best for beginners, as they provide students
with more detailed information and can point to phone-specific mistakes[2], whereas
phrase-level pronunciation assessment only sees the “big picture”.

CAPT systems can be classified into two groups. Systems in the first group
are trained with non-native speech labelled as correctly or incorrectly pronounced
[B][4]. Systems in the second group, on the other hand, rely on models trained
only with correctly pronounced speech (usually from native speakers) and measure
pronunciation quality based on the acoustic similarity between the student’s speech
and the speech in the training data [B][6][7]. Systems that use annotated non-
native data have been found to be more accurate [2]. However, non-native speech
datasets annotated at phone level are usually scarce or even non-existent for many
L1-languages (target students’ native tongue), making the task difficult. It should

also be noted that these systems are generally LL1-dependent, meaning they only work
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for the intended L1s. For example, a system designed to score English pronunciation
trained only on Argentinian speakers should not be expected to work well for Chinese
speakers, whereas systems in the second group can be used regardless of the L1.
The aim of this work is to propose and analyze a neural network-based phone-
level English pronunciation scoring system designed to be used by students in Ar-
gentinian schools. It will be trained using EpaDB [§], a database of Argentinian
speakers annotated at a detailed phonetic level. The system proposed in this work

will belong to the first of the two groups mentioned in the previous paragraph.

1.2 Previous work

In this section, we will review several existing approaches for pronunciation scoring.
First, we will introduce a traditional, non-DNN-based system. Then, we will move

on to more modern DNN-based methods.

1.2.1 Original Goodness of Pronunciation method

One of the earliest phone-level pronunciation scoring systems is called Goodness of
Pronunciation or GOP and relies on Automatic Speech Recognition (ASR) mod-
els [7], which solve the task of automatically transcribing speech. When the GOP
method was first proposed, ASR models relied on Hidden Markov Models [9] (HMM)
trained for each phone that used Gaussian Mizture Models [10] (GMM) as proba-
bility density functions for the emission of acoustic events. We explain GMM-HMM

acoustic modeling in sections [2.2.1] and [2.2.2]

The GOP measure estimates the pronunciation quality of a given phone instance
p as the logarithm of the posterior probability P(p|O®)), that is, the probability that
the speaker uttered the phone p given the observation of the acoustic segment O®),

normalized by the duration:

|log (P(plO®))|

GOP(p) = NF()
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By applying Bayes’ theorem, the score can be estimated using the likelihoods
p(OP)|p), which can be obtained from the previously mentioned GMM-HMM model.
The GOP formula then becomes:

p(OW|p)P(p)
o (zmpwwq)P(q)) ‘ /¥ (12)

where @) is the set of all phones and NF(p) is the number of frames spanned by

GOP(p) =

p. The likelihoods p(O® |p) in the numerator are determined by aligning a known
orthographic transcription of the utterance to the recording using the Viterbi algo-
rithm using the GMM-HMM model. The likelihoods p(O®|q) in the denominator
are calculated with the GMM-HMM model as well, but unconstrained to any tran-
scription (see section .

We can think of GOP scores as a measure of how confident an ASR model is
in its prediction of a phone. The closer a speaker’s pronunciation is to that of a
native speaker, the higher the likelihood of the target phones should be, so the GOP
score should be higher (The GOP score is a log-likelihood, so it will be zero if the
likelihood is one, and negative if the likelihood is lower than one).

Formula can be simplified in a few ways, such as approximating the sum in
the denominator by its maximum, which can be more efficient to calculate. It can
also be assumed that all phones in the phone set have the same prior probability so

that they cancel out. With these modifications, we arrive at the following, simpler

p(O™]p)
1 (e epion )|/ 70 -

It should be noted that this method does not require annotated non-native speech

formula:

GOP(p) =

to be trained, as it relies only an ASR model which is trained on native data.

1.2.2 Deep Neural Network-based methods

In the past few years, deep neural networks have become one of the most widely
used artificial intelligence models, showing great advancements in many different

fields, including Automatic Speech Recognition [II]. Since pronunciation scoring
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systems often rely on ASR technology, these advancements triggered new work on
applying deep neural networks for this task, obtaining improvements over traditional
methods, both for systems trained with non-native data as well as those that only
use native data. Such is the case of the GOP method, which was reformulated
by replacing the GMM-HMM based acoustic models and aligners with DNN-HMM
alternatives [12].

The original GOP method came down to calculating the posteriors P(p|O®).
In a GMM-HMM setup, these posterior probabilities were estimated using the like-
lihoods p(O®|p), as mentioned previously in section [1.2.1, In the DNN variant
of the GOP method this is no longer needed as the posterior probabilities can be
obtained from the DNN acoustic model directly. In DNN acoustic modeling, DNNs
take a few frames of acoustic input (a sequence of feature vectors extracted from
the audio) and output the probability of the given acoustic features being emitted
by each HMM state. In other words, they are trained to predict HMM states given
an acoustic input (we explain this in more detail in section . Since each HMM
state corresponds to a single phone, a DNN acoustic model’s output can be used
to obtain P(p|O®), where O®) is the input to the DNN. This way, it is no longer
necessary to apply Bayes’ theorem as in equation This method was proposed
in [12] and will be used as baseline for this work. It will be described in detail in
section [2.3] There have since been other DNN-GOP variants, such as [13][14].

As mentioned, systems trained with L1l-specific non-native data often perform
better, but face the challenge of data scarcity. For this reason, some works on pro-
nunciation scoring have opted for transfer learning approaches. In transfer learning,
models trained for a certain source task are re-purposed to solve the target task.
If models that are already good at the source task have learnt something that is
also relevant to the target task, it is possible to achieve better performance with the
same amount of data than by training a completely new model for the target task.
[15]. This is very popular in data scarcity scenarios across many different domains,
and there are successful examples of this in pronunciation scoring. [16] proposed

an approach where the output layer of the ASR DNN was replaced with a new
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layer trained to detect incorrectly pronounced phones. Similarly, [I7] started from a
CNN trained with a large dataset of images and trained it to classify mispronounced
phones from spectrograms. As will be discussed later, the method proposed in this

work is strongly based on [16], relying on a similar transfer-learning strategy.



2. METHODS

In this chapter, we will describe the DNN-GOP system used as baseline, as well as
the newer transfer-learning approach explored in this work. The features used to
represent speech and the metrics used to evaluate the system’s performance will also

be explained.

2.1 Features

In machine learning, features are attributes, most often numeric, that describe the
data used in a system. For any machine learning task, it is always important to
choose good features, that is, features that describe the data in a way that is relevant
to the problem. In this case, features will be extracted from the waveforms used to
train and test the system before being passed as input for the neural networks. The

features used in this work are Mel Frequency Cepstral Coefficients and iVectors.

2.1.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) are features that are used for many
speech processing tasks. They are designed to represent audio in a way that relates
to human perception. They are frame-level features, meaning they are extracted
from every frame, which are small chunks of the audio signal, usually around 25 ms
long. By computing these features for every frame, we can describe the perceptually-
relevant acoustic properties of the signal at every point in time.

The computation of MFCCs consists of the following steps:

1. Pre-emphasis: In human speech recordings, low frequencies usually have a
higher amplitude than high frequencies, meaning that high frequencies become
attenuated, even though they are an important part of speech. To remedy this,

a high-pass filter is applied to the signal, which amplifies high frequencies.
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2. Windowing: As mentioned, MFCCs are frame-level features. Hence, the signal
must be divided into small frames. Frames should be small enough so that the
signal does not change too much within that time window, but long enough to
provide enough samples to accurately describe the frequencies present in that
window. The standard frame size is 25 ms, and the shift between the start of
one frame and the next is 10 ms. This produces an overlap of 15 ms between

frames, so that the information between two adjacent frames is captured.

3. Spectral analysis: Using the Fast Fourier Transform (FFT), the signal is con-
verted from the time domain to the spectral domain. This means that instead
of measuring the amplitude of the signal for each moment in time, spectral
analysis describes the power of the frequencies present in the signal during the

whole frame.

4. Mel scale: Humans do not perceive all frequencies equally. Small changes in
pitch are distinguished more easily in low frequencies than in high frequencies.
The mel frequency scale is a transformation that can be applied to a signal in
order to represent this phenomenon. It is linear up to 1000 Hz and logarithmic
for higher frequencies, which roughly approximates human perception of pitch.
A signal can be converted to the mel scale by applying a series of 40 triangular
filters to the spectral representation computed in the previous step where the
filters are located with centers defined by the mel scale . These filters produce
values called filterbank energies that represent the loudness of frequencies along
different ranges of the linear scale. Finally, the natural logarithm of each
filterbank energy is computed to account for the fact that the human hearing
system perceives small fluctuations in loudness more easily in quieter than in
louder signals (just like pitch differences). As mentioned, 40 filters are used in

this work, but different amounts may be used for different tasks.

5. Cepstral Coefficients: The Discrete Cosine Transform (DCT) is applied to the
filterbank energies, resulting in the final cepstral coefficients. These are the

final MFCCs.
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2.1.2 iVectors

Identity vectors or iVectors, for short, are acoustic features first introduced in [1§]
for the task of speaker verification, i.e, verifying a speakers identity. However, they
are also useful for speech recognition and pronunciation scoring, since they provide
a big picture of the signal’s speech content. Unlike MFCCs, they are not calculated
for each frame in an utterance, but for whole audio signals or long portions of them,
such as ten seconds. iVectors are calculated by adapting the means of a Universal
Background Model (UBM), which is a global GMM trained with a large number of
speakers. The UBM is trained to model a set of features extracted from the speakers’
utterances, in this case, MFCCs. By adapting the means of the UBM based on a
new utterance’s MFCCs, it is possible to find such a GMM representation for any
new speaker based on the features of the speakers used to train the UBM. However,
the full GMM representation of a speaker has a vector of means that is very large,
usually in the order of thousands. Thus, iVectors are projections of these mean
vectors onto a lower-dimensional space, in this case, a subspace of 100 dimensions.
The in-depth mathematics of how iVectors are calculated are too complex and out

of scope to fully describe in this work. For more detail, see [1§].

2.2 Automatic Speech Recognition fundamentals

The GOP method, both in its original GMM-HMM version as well as the more
modern DNN-based variant used as baseline for this work, relies on ASR models
to compute the necessary probabilities and forced alignments. In this section, we
will introduce some elements of traditional ASR systems that are important to fully

understand the GOP method in both of its variants.

2.2.1 Hidden Markov Models

In order to understand how GMM-HMM acoustic models work, we need a brief

introduction to HMMs. Hidden Markov Models are statistical models consisting of
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“hidden” states, transitions between these states, and emissions, which are observ-
able features. In each state, there is a probability distribution for the emissions, as
well as a certain probability of transitioning to any other state or staying in the cur-
rent state. The emissions can be observed directly, but the internal state sequence
that produced a certain sequence of emissions cannot, so it must be inferred based on
the observations, hence the name “hidden” state. Transition probabilities depend
only on the current state, so there is no memory of the previous state sequence.
There is also a starting state. In general, when the observations are continuous in
nature, Gaussian Mixture Models are used as probability density functions.

HMDMs are useful at representing certain phenomena where there is an unknown
sequence that must be inferred by observing a sequence of events that relates to the
unknown sequence in some way. For more detail on the topic of Hidden Markov
Models, such as how they are trained, see [9].

In the context of ASR, HMMSs are used to model phone (or word) sequences,
which are inferred based on a sequence of acoustic observations (a set of features
extracted from a speech signal). In modern ASR systems, HMM states correspond to
subphonetic units, called senones [19]. The motivation for this subphonetic modeling
stems from the fact that the acoustic features of phones behave differently depending
on the context, that is, which phones come before and after them. Each possible
phone conditioned to a certain context is called a triphone. Instead of having a
single state per phone, HMMs can have three states per triphone: one for the
start, middle, and end. With this level of detail, acoustic emissions for each HMM
state can be modelled more accurately than using only a single state per phone.
However, this also causes the HMM to have a huge amount of states, which makes
them impractical. This is addressed by clustering states that have similar emission
probability distributions into one, which is possible because some triphones are
similar. Decision trees such as the one shown in figure [2.1| are used to decide how
triphones can be clustered based on phonetic properties. This cluster of hidden
states is what is finally called a senone, and the final HMM has a single state for

each senone. Figure helps visualize the process of creating senone HMMs.
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Phone /ih/
beg. state

Left nasal?
Yes _— —_ No
- )
F Sy
P S
sl TR
Right liquid? Left fricative?
Yes —~ . No
Yes No
Right /1/?
Cluster A: Zhedle
n-ihHl, O O O
ng-ih+1, YeV No Dy )
Cluster B:
n-ih+r,
2 ng-ih+tr,
m-ih+r,
o N-ihtw

Fig. 2.1: A decision tree to find possible clusters of triphones for phone /ih/ based on the
phonetic properties of the phones that appear to the left and right of a given
instance of phone /ih/ in a word. The flow of these trees start at the top, in the
beginning state. From there, a series of questions about the adjacent phones are
made, leading to the leaves of the tree, where a certain cluster is assigned. In
this case, only five senones are built, greatly reducing the amount of states in the
HMM. For example, using this phonetic tree, the phone /ih/ in the word “miss”
would be assigned cluster E, since the phone /m/, to the left of phone /ih/ is

nasal and not fricative. Taken from |[Jonathan Hui’s blog on ASR/


https://jonathan-hui.medium.com/speech-recognition-asr-model-training-90ed50d93615
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(1) Train monophone
single Gaussian
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(2) Clone monophones /\ )
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lll l
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T bbbt 554 0@25@
o i

l l

(4) Expand to t-iy+n t-|y+ng f-iy+l s-|y+l

GMMs
el
VAN

Fig. 2.2: An example of the steps involved in expanding phones to triphones and clustering

triphones to senones for phone /ih/. First, a single 3-state HMM is trained, using
a single gaussian for the emissions in each state. This monophone model is cloned
for each possible triphone, which are then clustered based on a phonetic decision
tree such as the one shown in figure[2.1] Finally, the emissions for each senone are
modeled with a new GMM trained using the single gaussians from each triphone

belonging to that senone. Taken from |Jonathan Hui’s blog on ASR.

2.2.2 GMM-HMM-based acoustic model

Traditionally, GMMs were used as the probability density functions for the emissions
in the HMMs. In this case, GMMs are trained to model MFCCs of each triphone
(which are then clustered into senones as explained in the previous section). For-
mally, the GMMs for the HMM state corresponding to senone s allow us to calculate
the likelihoods P(O|s), where O is an acoustic input. These are the likelihoods that

are used in the GOP method, as we will explain in section [2.3]


https://jonathan-hui.medium.com/speech-recognition-asr-model-training-90ed50d93615
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2.2.3 DNN-HMM-based acoustic model

Nowadays, it is common to use DNNs instead of GMMs to model the emissions of
HMMs [11]. We saw in section[2.2.2]that the emission probabilities of an HMM-based
acoustic model are P(O|s), where O is an acoustic input and s is a senone. Hence,
in order to build a DNN-HMM-based acoustic model, we need to calculate these
likelihoods using DNNs. For this purpose, DNN-based acoustic models are trained
to classify senones given an acoustic input. This is equivalent to determining which
HMM state (corresponding to a single senone of a previously trained acoustic model)
could most probably have emitted a set of acoustic features. Formally, the output of
the DNN at frame ¢ can be expressed as P;(s|O), where s is a senone and O is the full
sequence of acoustic features. These are posterior probabilities, not the likelihoods
that we need for the emissions of our HMM. However, since the probabilities P(s)
are known from the data used to train the DNN, a scaled version of the likelihood

p(Ols) can be calculated by dividing P(s|O) by P(s). This is because of Bayes’

theorem:
p(Ols) = % (2.1)
p(Ols) o T (22)

The resulting likelihood is scaled by the unknown factor p(O), but this has shown
not to seriously affect the performance of ASR systems [IT]. These scaled likelihoods
can be used for the emission probabilities of the HMM used in ASR decoding and

to compute forced alignments, which will be explained in the next section.

2.2.4 ASR decoding and forced alignments

Now that we have some insight into how both types of acoustic models work, we
can understand how ASR systems decode sequences of acoustic features into words.
The task of an ASR system is to find the sequence of words that was most probably
uttered in an audio recording. So, given a sequence of acoustic featuers X, the

task is to find the word sequence W that maximizes P(W|X). Acoustic models can
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be used to find out which phones were uttered in a given speech segment. This,
however, is not enough for ASR decoding, as we want a word-level sequence and
not a phone-level sequence. Additional steps need to be taken to determine which
words were uttered based on the phone sequence. This is not trivial, since there
are cases where two different words or word sequences can be pronounced the same
way. For example, flour and flower. For this reason, there are also two additional
components to ASR systems: a language model and a lexicon. The language model
is trained on text data and describes the probability of finding a given word in a
sentence based on a certain amount of words that came before it (for example, a
well trained language model would output a high probability for the phrase Bread
18 made with flour compared to Bread is made with flower. The lexicon contains all
the possible phonetic transcriptions of each word, so as to know which words a given
phone sequence could represent. When decoding an acoustic sequence, the language
model and lexicon are used together with the acoustic model to find the most likely
word sequence. This is done using the Viterbi algorithm [9]. Figure shows
the composition between a language model for words one, two, and zero and the
respective HMMs for these words. HMMs for each word are built by concatenating
the HMMs for each phone according to the possible pronunciations of each word,

which are given by the lexicon.
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p(one | one )
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N e ' I ~ ) — -~ -\: £ N ~~ ' S L

p( zero | zero )

Fig. 2.3: An Example of a language model for words one, two, and zero as a bi-gram (only
the previous word is considered to determine the probability of the next word)
composed with the HMM for each word. Emission probabilities for each state

are omitted. Taken from Jonathan Hui’s blog on ASR

If the orthographic transcription of an utterance is known, this same method can
be applied to align that transcription to a recording by constraining the language
model to that word sequence. This is done in the original GOP method both to

calculate the necessary likelihoods and phone boundaries.

2.3 Baseline: DNN-based GOP system

The baseline for this work is the DNN-GOP method proposed in [I12]. GOP uses
estimates of posterior probabilities of the target phone as scores. Recalling section
1.2.2] the DNN version of this method obtains these posterior probabilities from

an acoustic model such as the one detailed in section [2.2.3] which is trained only
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on native data and predicts senones given an acoustic input. The formula for the
DNN-GOP score of a phone p starting at frame 7', with a duration of D frames is:
| TPt
GOP(p) =——5 > logPi(p|O) (2.3)
t=T

where O is the full sequence of features for the waveform and P,(p;|O) is the
DNN'’s estimate of the posterior probability for phone p at frame ¢t. The start
and end frames for each target phone are obtained using a forced-aligner given the
word transcription. Note that the DNN acoustic model provides likelihoods for each
senone, P(s]O), and not for each phone. To obtain P(p|O), we average all the

likelihoods for senones corresponding to phone p.

2.4 Proposed method

As mentioned previously, CAPT systems based solely on measuring the speaker’s
similarity to native speech can fall short. This is because these systems never see
examples of what incorrectly pronounced speech looks like as part of their training.
Again, the inherent assumption is that correctly pronounced speech will be more
similar to the samples seen during training than incorrectly pronounced speech.
This is a fairly simplistic assumption that ignores the boundary between correct
and incorrect pronunciations. Furthermore, using the confidence of an ASR model
as a pronunciation assessment is specially problematic. Even though ASR is a
task that is related to pronunciation scoring, it is not the same task. The goal of
an ASR system is to recognize speech as well as possible, so a good ASR system
should in fact be able to accept a wide variety of pronunciations, which may give
it a high confidence even with somewhat incorrectly pronounced speech, defying
the aforementioned assumption. On the other hand, systems trained with labelled
samples of both correctly and incorrectly pronounced phones have a clear advantage
in terms of the available data, because it stands to reason that a model trained for
a specific task with specially designed data should perform better than applying

a model trained for a similar but different task. The method proposed in this
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section uses annotated non-native data, which is why it is expected to outperform
the baseline system.

The DNN-GOP system described in the previous section uses an ASR model
that classifies senones. The posterior probabilities obtained from this model are
then used to compute the GOP score as described in equation [2.3, However, it is
possible to fine-tune said model to output pronunciation scores directly. To achieve
this, the DNN ASR acoustic model’s output layer, which has one output node per
senone, will be replaced by a new layer with one output node per phone in the
English language. This layer is composed of an affine transformation followed by
sigmoid activation functions. Sigmoid activations are used because we want to make
a binary decision: correctly or incorrectly pronounced phone. Hence, we do not want
a probability distribution over all of the phones, but over the correctly /incorrectly
pronounced class for each phone individually. The original acoustic model used
softmax activations because its goal was to generate a probability distribution for
all the senones. For each frame in the utterance, the new model will output a score
for each phone. Figure [2.4] shows a schematic of the new method alongside the
baseline method.

Forced alignments are still necessary to determine which phone the speaker
should have pronounced in each frame. This is called the target phone. Recall
that in the GOP method, the DNN outputs posteriors for all 6024 senones, but only
those corresponding to each frame’s target phone are taken into account (i.e. aver-
aged). In the same way, the new model will output 39 scores (one for each phone),
but only the score from the node corresponding to each frame’s target phone is
relevant (see the phone selection step in figure . Thus, during training, only
one node’s score will be used to calculate the loss function for each frame. During
inference, only the target phone’s scored will be considered to evaluate pronuncia-
tion. The alignments will be calculated in the same way as in the baseline system
(see section . To obtain a single, final score for a phone in the utterance, the

relevant scores for each frame during which the phone was uttered are averaged.
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Fig. 2.4: Schematic for the GOP and proposed models. A waveform and its transcription
are fed to a forced aligner to obtain the start and end times of each target
phone. A DNN model is then used to generate frame-level scores for each phone
in the language. For the baseline GOP system (top branch in grey block), this
block includes the step where senone posteriors are summed over all senones
corresponding to each phone to get scores per phone for each frame. In the

case, of the proposed model (bottom branch in grey block), the DNN directly

produces scores (probabilities of correct pronunciation) per phone. In the next
step, the score corresponding to the phone found by the forced-aligner at each
frame is selected, resulting in one score for each frame in the signal. Finally,

pronunciation scores are computed by averaging the frame-level scores over all

the frames for each phone in the alignments.

The loss function used for fine-tuning the model’s parameters, including the

replaced output layer, is given by:

L= _Zzwpy Z yilog g + (1 — y) log(1 — %)

peP yeY t€Tpy

(2.4)

where the first sum goes over P, the set of all phones in the model; the second
sum goes over the two classes, Y = {0,1}, incorrectly and correctly pronounced,
respectively; the third sum goes over T;, = {t|p: = p Ay, = y}, all the frames in the
waveform for which the target phone found by the forced aligner for time t, p;, is p

and the pronunciation label for that frame (inherited from the label for p; ), v, is

y; and g; = P,(p;|O) is the posterior generated by the DNN for frame ¢ and phone
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p given the sequence of observations O.

The weights w,,, are used to adjust the influence of the samples from each phone
and class. Two approaches were evaluated in this regard: flat weights and bal-
anced weights. With flat weights, all w,, are set to 1, resulting in all frames
having the same influence on the loss. In this case, this is just the standard bi-
nary cross-entropy loss function. With balanced weights, on the other hand,
Wpy = 1/N,,, where N, is the number of frames for phone p and class y (when

N,

oy = 0, wy, is set to 0). The second approach is meant to compensate for the

imbalance in pronunciation scoring datasets, where some phones are more frequent
than others and, for most phones, the positive class is more frequent than the nega-
tive class (because mispronunciations are not as common as correct pronunciations).
The problem with this imbalance is that when the loss function is dominated by
some phone-classes more than others, parameter adjustments will be motivated by
the model’s errors on those samples, thus leading to an imbalanced performance
across the different phone-classes.

The model is trained using Adam optimization [20]. The training loss is given
by Equation averaged over all samples in a mini-batch. In the case of balanced
weights, the N, are computed over the complete mini-batch rather than indepen-
dently for each sample, to give more stability to the loss since each individual sample
contains only a subset of all phones making N,, = 0 for most phones and classes on

most individual samples.

2.5 Metrics

In this section, we discuss how the performance of both the baseline and the new
method will be evaluated. When testing these systems, our ground truth are the
labels present in the manual annotations. What we want to see is a system that
agrees with these labels as much as possible, so the metrics used in this evaluation
will measure that in different ways. We will call samples classified as correctly

pronounced positives and samples classified as incorrectly pronounced negatives.
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Both the baseline and the proposed method output numeric scores for each phone.
Thus, a threshold needs to be set to make a hard decision on which samples are
classified as correct and which samples are classified as incorrect. The threshold can
be different for each phone. Some of the metrics that will be discussed in this section
measure performance for a specific set of thresholds, while others do not depend on

them.

False Positive Rate and False Negative Rate

A false positive occurs when the system classifies a given phone as correctly pro-
nounced but the ground truth labels for that phone are negative. As its name
suggests, the False Positive Rate (FPR) is the percentage of ground-truth negatives
that are wrongly classified as positives. The False Negative Rate is defined con-
versely. We would like to have both a FPR and a FNR that are as low as possible.
The formula for the FPR is:

FP

FPR = ———F—— 2.
hr FP+TN (25)

where FP is the amount of false positives and TN is the amount of true negatives.

Similarly, the FNR is defined as:

EN

FNR=——
R=eNT7p

(2.6)

Equal Error Rate

We use a threshold to decide whether a score obtained from the model corresponds
to a correct or incorrect pronunciation. The threshold that is chosen affects the
FPR and FNR. With a low enough threshold, all samples would be classified as
positive. Thus, the FNR would be zero, since there would be zero samples detected
as negative. Conversely, a high threshold, i.e. a having a very strict model, would
result in a low FPR, because there would be few positives. These two metrics can

be balanced: there is threshold value for which the FPR and FNR are equal or as
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close to each other as possible. The FPR/FNR value for such a threshold is called
Equal Error Rate (EER). We want the Equal Error Rate to be as low as possible.

ROC curve and AUC

Receiver Operating Characteristic (ROC) curves allow us to see the TPR (1-FNR)

and FPR values as the threshold is varied across its full range of possible values.

Perfect
classifier ROC curve
1.0®

True positive rate
]
£n

Falze positive rate

Fig. 2.5: An example of ROC curves. Taken from |Wikimedia Commons.

As can be seen in figure 2.5] the better a classifier is, the further its ROC curve
goes above the center line which represents a random classifier. If a system A has
a ROC that is always above that of another system B, it means that, for the same
FPR, the system A has a higher TPR and, hence, it is a more discriminative system
than B. Thus, the Area Under Curve (AUC) is a good metric to evaluate a classifier.
The area under the ROC curve will be higher if the ROC curve is higher. AUC is a
very widely used metric. A perfect classifier would have an AUC of 1.0.


https://www.wikimedia.org/wiki/File:Roc_curve.svg
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Cost

In the context of education, it is important not to frustrate students with inaccurate
or unnecessary corrections. On the other hand, failing to detect a mistake is not as
serious. For this reason, we have also defined a cost that prioritizes a low FNR over
a low FPR:

Cost =05FPR+ FNR (2.7)

False negatives contribute to this cost metric twice as much as false positives.
Therefore, minimizing this metric means minimizing false negatives more than false
positives. This type of cost function is widely used in speaker verification and
language detection tasks [21], where the weights are determined depending on the
application scenario. When setting the threshold to classify scores as positive or
negative, one possible approach is to choose the threshold that minimizes the cost
for each phone on the test data itself, resulting on the best possible cost on that
data (MinCost). Selecting the optimal threshold on the test data, though, leads to
optimistic estimates of the cost. Hence, for the evaluation data we also compute
the cost obtained when the threshold is selected as the one that optimizes the cost
on the development data for each phone. We call this the Actual Cost (ActCost).
We can see an example of this in figures and Figure [2.6| shows the score
distributions for correctly and incorrectly pronounced samples of phone /AY/ for
one of the systems tested on the development set, with a vertical line showing the
threshold that minimizes the cost function. Figure shows the score distributions
for the same phone and the same model configuration, but tested on the evaluation
data. In this figure we can see two thresholds, the bold line being the threshold
that was calculated on the development set, whereas the dotted line represents the

threshold that was calculated on the evaluation set.
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Fig. 2.6: Score distributions for correctly and incorrectly pronounced samples of phone
/AY/ when testing a model on the development data. Vertical line shows the

threshold that minimizes the cost function for the development data.
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Fig. 2.7: Score distributions for correctly and incorrectly pronounced samples of phone
/AY/ when testing a model on the evaluation data. Vertical lines shows the
thresholds that minimize the cost function for the development and the evaluation

data.



3. EXPERIMENTAL SETUP

In this chapter, we will describe the original ASR model used to compute the forced
alignments and the baseline GOP scores, as well as the modified version of the
model used in the new method. We will describe the setup used to train this model,
including the non-native speech dataset. Much of this work was focused on the
process of fine-tuning the model itself, which meant testing many different hyper

parameter configurations, so these will also be outlined.

3.1 Non-native dataset description

The non-native speech data corpus used in this work is EpaDB (English Pronounced
by Argentinians Database)[8]. It consists of 3200 short English utterances from 50
Spanish speakers from Argentina in different age and proficiency groups and bal-
anced by gender. The recordings were manually annotated with phonetic transcrip-
tions. These annotations, along with a lexicon containing a subset of all the correct
pronunciations of each word, are used to generate correct/incorrect labels for train-
ing. The utterance list was designed to contain enough samples of each phone, with
more emphasis on phones that are more likely to be mispronounced by speakers in
the region. This dataset was randomly split in two groups speaker-wise. The utter-
ances of 30 speakers were used as a development set and the 20 remaining speakers

were held-out for final evaluation.

3.2 Acoustic Model

The acoustic model used for both the forced alignments and computing the posterior
probabilities necessary for calculating GOP scores is a Factorized Time Delay Neural
Network (FTDNN) [22] trained to classify 6024 senones. This ASR model is used
in Kaldi’s [23] official GOP recipe. We recreated its architecture using PyTorch and

23
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extracted its parameters from the original Kaldi model to initialize the PyTorch
version.

This architecture is a modification of the TDNN architecture, which was first
proposed in [24]. The TDNN architecture was designed specifically for speech recog-
nition, and it exhibits the property of shift invariance, simply meaning that the
output of the model does not depend on the point in time where the input hap-
pened. This has been found to be useful in ASR systems because the sound of a
phone does not depend very much on the point in time where it occurs within an
utterance. However, this architecture does allow the model to detect temporal re-
lations between different parts of an input sequence within a certain window (given
by the amount of context frames), which is key in speech recognition because the
pronunciation of a phone highly depends on the phones that surround it. This is
accomplished by first feeding each frame to the network together with some num-
ber of adjacent frames for context. Similarly, when propagating features through
the hidden layers, the feature sequence is also extended with the features from the
sequence displaced by a certain amount of frames (the time delay). This process
is shown in figure 3.1} This allows the layer to establish connections between the
features at different nearby points in time.

The FTDNN architecture is similar to the TDNN architecture, with a slight
difference. Weight matrices are factorized as a means for dimensionality reduction.
Normally, trained weight matrices of linear layers can be factorized through Singular
Value Decomposition [25]. The size of a weight matrix can be reduced by using only
some of its singular values in the factorization, on the basis that not all of them
are needed to capture most of the important information in the model. After this
factorization, the model would be further fine-tuned. This led to the idea of using
such a structure (layers with bottlenecks) in training from a random start, instead
of first training a model normally and then factorizing its weight matrices and fine-
tuning. In [22], the authors propose a method for training a factorized-TDNN
(FTDNN) modell]in such a way, with an additional “semi-orthogonality” constraint

! The architecture of the Factorized-TDNN proposed in [22] is similar, but not exactly the same
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Fig. 3.1: Example of a TDNN hidden layer. In this example, a five frame long sequence
is fed to the layer and a time-delay of two frames is used for context by concate-
nating the sequence displaced one and two frames backward and forward to the
original sequence. f; represents the features at frame t. The first and last frames
are used for padding. The resulting sequence has the same amount of frames as
the original sequence, but each frame contains the features of five frames of the
original sequence. The time-delayed sequence is then fed to the affine operation.
An activation function A is then applied to the output of the affine operation.
The features f can be the input features to the network itself or the output of a

previous layer.

for one of the factors for improved training stability.

The FTDNN acoustic model used in this work takes 220-dimensional features as
input. The first 120 values correspond to the 40 MFCCs of the frame that is being
processed, plus the 40 MFCCs of the previous and next frame as context. The last
100 values are the components of the iVector. There are 17 hidden layers in this
FTDNN. Layers 2 through 17 are factorized into a linear plus an affine operation.
Time-delayed concatenated features are created before feeding them to the linear
and affine operations. These layers also have RelLU activations, batch normalization
and dropout (these will be explained in section . The operations happening
within these layers is shown in figure[3.2] Layers 2 through 4 use an offset of 1 frame
for time-delays. Layers 6 through 17, on the other hand, use an offset of 3 frames.

Layer 5 is the only hidden layer in the system that does not apply time-delays.

as the one that is implemented in the Kaldi ASR toolkit, and recreated in PyTorch for this work.
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Fig. 3.2: Operations in an FTDNN layer used in the system. The first time-delay is applied

only with negative offsets in the time dimension (feature sequence is shifted back).

The time-delayed sequence is fed to the linear bottleneck, resulting in a narrower

sequence. The second time-delay is applied only with positive offsets in the time

dimension (feature sequence is shifted forward). The resulting sequence is fed to

the affine transformation, which outputs a sequence as wide as the input sequence

to be propagated to the next layer after ReLU activations, batch normalization,

and dropout are applied. Numbers to the left of the sequences represent the

width of the features. Note that the use of a linear bottleneck results in a much

smaller amount of parameters than if the layer simply used a 1536x1536 affine

transformation, which is the motivation for this factorization.
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Layer 18 is a simple linear bottleneck layer with a width of 256 nodes. The
original output layer has a dimension of 6024 (the number of senones in the Kaldi
ASR model) and uses softmax activations. When fine-tuning this model to output
pronunciation scores directly, we replace this last layer with one with 39 nodes, one
for each target phone, each with a sigmoid activation.

Another interesting aspect of this architecture is how features are propagated
through the model. Instead of only propagating each layer’s outputs to the next
layer, skip-connections are used: each layer takes a weighted sum of the previous
two layers as input. Figure shows the full architecture of the FTDNN with both
possible output layers (the original used for senone classification, and the new one

used for mispronunciation detection).

. i Orginal Qutput
Skip Connection Layer

l (256 x 6024)
Layer 18

Layer 1 Layer 2 Layer 3 Layer 17 U
M“M » |Input Layer > FTDNN Layer | _, @ > FTDNN Layer FTDNN Layer e
(220 x 1536) (1536 x 1536) (1536 x 1536)

Skip Connection

A

(1536 x 1536)

(1536 x 256)

New Qutput
Layer

Skip Connection

(256 x 39)

Fig. 3.3: Full architecture of the FTDNN used in this system with both possible output
layers, the original one used for senone classification and the new one used for

mispronunciation detection.

3.3 Baseline GOP

As a baseline, GOP scores were calculated using formula by replicating the
official Kaldi GOP recipe using PyKaldi [26]. The posterior probabilities, as well as
the necessary forced alignments were computed using the above-mentioned acoustic

model.
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3.4 Fine-tuning experiments

As mentioned, once the Kaldi acoustic model was recreated in PyTorch, its 6024-
node output layer was replaced with one with only 39 nodes (one per phone). During
fine-tuning experiments, this layer was trained to output posterior probabilities for
classes correctly/incorrectly pronounced for each phone directly. When training the
new layer, we retain the parameters of the pre-trained model for all layers except the
last as initial values. The replaced output layer is initialized with random values.
We explore two approaches for fine-tuning the new model: LayQO, where only the
new output layer is trained, keeping all other parameters frozen at their pre-trained
values, and LayO+-1, where the last hidden layer is also trained. In the second case,
we train the model in two stages: first, only the output layer is trained over several
epochs and then the second to last layer is unfrozen and both layers are further
fine-tuned. In our preliminary experiments this procedure gave better results than
training both layers together from the first epoch, in agreement with many other
works that do fine-tuning on different tasks [27]. However, further experiments
showed comparable performance when training two layers in one or two stages, as
we will see in chapter [d] We will also show that training three layers instead of two
did not lead to further improvements, probably due to the third-to-last layer having
too many parameters for the amount of training data available.

As mentioned, we use Adam optimization with loss function shown in equation

for fine-tuning. We used a batch size of 32 samples during all of the experiments.

3.4.1 Cross-Validation

During development, we used K-Fold Cross Validation to make the most out of the
available training data. In K-Fold Cross Validation, the development set is divided
in disjoint train and test sets in K different ways, each leaving out a different group
of samples to test on. In this case, we used 6 folds. The 30 speakers were divided
into 6 groups with 5 speakers each. During every training experiment, 6 different

models were trained, each one using a different combination of 5 of the 6 groups of
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speakers, leaving out the remaining group for testing. This ensures that no model
is tested on the same data that it was trained on, which is always important to
avoid reporting overly optimistic results. However, this technique also allows for
both training and testing on the whole development set (even though no model is
trained on the whole set), taking more advantage of the dataset than if the data was
simply split in training and testing sets. Initially, the latter, simpler approach was
used, but the data was found to be insufficient to effectively train and then validate
the model.

Once the hyperparameters for a model configuration were tuned using cross-
validation, a final evaluation of that configuration was done by training a single,
new model on the 30 development speakers and then testing on the 20 held-out

evaluation speakers.

3.4.2 Hyperparameters

Several combinations of hyperparameters were explored, with varying results that

will be reported in chapter [4]

Batch normalization is the process of normalizing a batch of inputs by sub-
tracting the mean and dividing by the standard deviation for each feature, where
the statistics are computed over the batch’s samples. This has shown to contribute
to faster and more numerically stable training. All layers in the original model used
batch normalization, but we tested the performance of the trained models with and
without using batch normalization on the new output layer, and found that the

models that used it performed better.

Dropout refers to randomly setting some percentage of the outputs of a linear
layer to zero during each forward pass in training. This has shown to reduce over-
fitting to training data, the reason being that the model’s layers see a slightly dif-
ferent input every time the same sample is fed into the model, since varying sets of

weights get set to zero each time. We evaluated multiple possible values for dropout



3. Experimental setup 30

probability, ranging from 0 (no dropout) to 0.5 with a granularity of 0.1. As we will

see, the best results were found using a dropout probability of 0.4.

Learning rate is a parameter of the optimizer and refers to the size of the op-
timization steps that are taken, i.e. by how much the weights are adjusted in the
direction opposite to the loss function’s gradients in each step. A bigger learning
rate means the model learns more quickly, but can lead to “overshooting” the op-
timal parameter values. On the other hand, a small learning rate causes slower
convergence, but can also allow for a smoother approximation of the optimal pa-
rameters. This phenomenon is illustrated in figure [3.4, We tuned the learning rate
by evaluating the values 0.001, 0.002, 0.005 and 0.01, and found 0.005 to be the best

one when using a fixed learning rate.
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Fig. 3.4: Example of too low, too high, and optimal learning rates.

Taken from Jeremy Jordan’s blog on learning rate tuning,.

LR scheduling is a technique that consists of automatically tuning the learning

rate between training iterations. It is often better than using a constant value
because the optimal learning rate may be bigger when parameters are too far off
in a certain direction, but smaller when they are close to a point of minimum loss.

Typically, at the start of training, parameters can be tuned more aggressively, since


https://www.jeremyjordan.me/nn-learning-rate/
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the loss is still very high. We experimented with multiple different schedulers and
ultimately settled for exponential decay scheduling where the learning rate decays
by a factor of 0.9 every 10 epochs, starting from a relatively large learning rate of

0.01, which proved to be better than using a fixed learning rate.

Balanced loss weights were used to prevent overly represented classes in the
dataset from contributing too much to the loss while classes with less occurrences
contribute less, as explained in section[2.4] This showed better results than using flat
weights. Some phones in the dataset have very few instances in the minority class
(usually the incorrectly pronounced class). We considered 50 to be the minimum
amount of instances in a given class necessary to effectively train the model. Hence,
phones with less than 50 occurrences in the minority class had their weights set to
zero so that they do not add noise to the loss (both when using balanced as well as

flat weights).



4. RESULTS

In this chapter, we show the results of the experiments. In sections[d.Iand[4.2)are the
experiments for finding the best dropout probability and learning rate, respectively.
Section compares results when training different amounts of layers, showing
that training two layers provided better performance than training one or three.
In that section, we also provide an analysis on whether or not it is better to use
gradual unfreezing when training two layers or training them both from the start.
In section [4.4) we compare models with different hyper parameter configurations.
Finally, section [4.5| compares the GOP system against the best configuration for the

fine-tuning method on the evaluation data.

4.1 Dropout tuning

Figure shows average MinCost and 1-AUC (so that lower values are better for
both metrics) across epochs for models trained with batch normalization and differ-
ent dropout probabilities. Using a dropout probability of 0.3 gives a gain of 1.1% in
1-AUC and 2.1% in MinCost over using a probability of 0.2. Increasing the dropout
probability to 0.4 results in a gain of 0.5% in 1-AUC and no visible gain in MinCost.
A further increase to 0.5 degrades performance, resulting in an almost equal 1-AUC
and MinCost to that of the system trained with a dropout probability of 0.2. This
suggests that a probability of 0.5 is too high, making it difficult for the model to fit

to the training data.

32
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Fig. 4.1: Average 1-AUC and MinCost over phones with more than 50 samples of each
class for the development data across epochs for models trained with different
dropout probabilities. These models were trained with a fixed learning rate of

0.005, batch normalization and the balanced loss function.

4.2 Learning rate

As mentioned, two approaches were explored in regards to learning rate. The first
option was using a fixed learning rate. After the best fixed learning rate was found,
we experimented with a learning rate schedule starting at a bigger learning rate than
the best fixed value that would then decrease by a factor of 0.9 every 10 epochs.
Figure shows average MinCost and 1-AUC across epochs for models trained
with the different fixed learning rate values. The model trained with the highest
learning rate, 0.01, converges more quickly than the rest, but provides a 1-AUC and
MinCost that are 0.6% and 1% worse than the model trained with a learning rate
of 0.005 after 400 epochs. This indicates that a learning rate of 0.01 is too high,

causing training to overshoot the optimal parameters.
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Fig. 4.2: Average 1-AUC and MinCost over phones with more than 50 samples of each
class for the development data across epochs for models trained with different
fixed learning rates, with batch normalization, a dropout probability of 0.4 and

the balanced loss function.

We can also see that learning rates lower than 0.005 provide a more stable descent
in both metrics, but take longer to converge. Considering this trade-off between
smooth descent and how long it takes to converge, we consider 0.005 and 0.002 to
be the best fixed learning rates, as 0.002 is only slightly slower than 0.005 and still
provides similar results after 400 epochs with a smoother descent. We consider the
learning rate of 0.001 to be too slow.

On the other hand, we see that the higher value of 0.01 works well at the start of
training. Up to epoch 100, the model trained with the higher learning rate has lower
1-AUC and MinCost than all the other models. This is because aggressive updates
to the parameters make sense at the beginning, when they are randomly initialized
and very far off the optimal values. As mentioned, this motivates starting training
at such a high learning rate value, and then progressively lowering it. Figure 4.3
shows average MinCost and 1-AUC across epochs for three models, one trained with
the fixed learning rate of 0.005, another with a fixed learning rate of 0.002, and the
last one using the mentioned learning rate scheduler. We can see that the model
trained with the scheduler converges more quickly and smoothly than both models

trained with fixed learning rates, starting with a bigger drop in both metrics and a
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smoother and more consistent descent thereafter. This scheduler combines the best
of both worlds, providing both a faster convergence than the higher fixed learning

rate and a descent as smooth as that of the lower fixed learning rate.
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Fig. 4.3: Average 1-AUC and MinCost over phones with more than 50 samples of each class
for the development data across epochs for models trained with fixed learning
rates of 0.005 and 0.002, and one trained with a with a learning rare scheduler
starting at 0.01 and decreasing by a factor of 0.9 every 10 epoch. The three
models were also trained with batch normalization, a dropout probability of 0.4,

and the balanced loss function.
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Fig. 4.4: Average 1-AUC and MinCost over phones with more than 50 samples of each
class for the development data across epochs for various fine-tuning approaches.
LayO and LayO+41: the last layer or the last two layers are fine-tuned. BN:
batch-normalization is used as the first component in the output layer. DO:
dropout is used in all layers (the dropout probability is 0.4, which is the optimal
value that was found in the dropout tuning experiments). Bal: the loss with
balanced weights is used in training. For reference, the GOP system has 1-AUC
of 0.286 and MinCost of 0.801. All the models shown were trained with the

learning rate schedule covered in section [4.2

4.3 Training multiple layers

During fine-tuning, we tried training three different amounts of layers: just the new
output layer, the last two layers, and the last three layers. When training more than
one layer, the output layer can be trained on its own for a certain number of epochs,
and then the previous layers can be unfrozen and further trained for an additional
amount of epochs. In fine-tuning tasks, this is often better than training both layers
in a single stage [27]. This is due to the fact that the new output layer is initialized
randomly, whereas the layers before are pre-trained. Hence, training all layers at

the same time can cause the pre-trained layer to forget what it had learnt before.
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We found this to be the case in some of our preliminary experiments. However, with
other setups, we found it did not make a difference whether or not we used gradual
unfreezing to train more than one layer. Such is the case with the results shown in
figure 4.5 where we compare 1-AUC and MinCost across epochs for four models:
one where only one layer is trained (1-Layer), one where two layers are trained
with gradual unfreezing (2-Layers-Double-Stage), one without gradual unfreezing
(2-Layers-Single-Stage), and one where three layers are trained (3-Layers-Double-
Stage), also with gradual unfreezing. 2-Layers-Double-Stage converges to the same
performance as 2-Layers-Single-Stage, but it takes slightly longer, which means it
may even be better to train both at the same time to have a lower training time.
However, we still found gradual unfreezing preferable for the rest of the experiments
since it implies training for only 300 epochs if the last layer has already been trained
on its own, whereas training both layers in a single stage takes at least 400 epochs

to converge.
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Fig. 4.5: Average 1-AUC and MinCost over phones with more than 50 samples of each
class for the development data across epochs for four models. In one model,
only one layer was trained. In another, three layers were trained. There are
two setups where two layers were trained. Single-Stage means both layers were
trained from the start, whereas in Double-Stage, the last layer was trained on
its own first for 300 epochs, and then the second-to-last layer was unfrozen and
both layers were trained for an additional 300 epochs. In the setup where three
layers were trained, the last layer was trained on its own for 300 epochs, then
both additional layers were unfrozen at the same time and all three layers were
trained for an additional 300 epochs. All models were also trained with batch
normalization, a dropout probability of 0.4, the learning rate schedule and the

balanced loss function.

4.4 Comparison of different configurations

Figure shows average MinCost and 1-AUC across epochs for different fine-tuning
approaches on the cross-validation data. The first system (LayO) corresponds to
fine-tuning only the output layer, without batch normalization or dropout and us-
ing the flat loss function. Adding batch normalization as the first block in the
output layer gives a relative gain of 6% in 1-AUC and 4% in MinCost, while doing
dropout during training with a probability of 0.4 gives gains of 10% and 6%. Finally,

LayO+1, the system where the last two layers are fine-tuned, gives an additional
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gain of 5% and 3%. Using the balanced loss function gives a small but consistent
gain over using the flat loss. Interestingly, the trends on 1-AUC and MinCost are
similar. The best system, “LayO-+1 BN DO Bal”, gives a gain of 40% in 1-AUC
and 23% in MinCost over the baseline GOP system on this data.
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Fig. 4.6: Average 1-AUC and MinCost over phones with more than 50 samples of each
class for the development data across epochs for various fine-tuning approaches.
LayO and LayO+1: the last layer or the last two layers are fine-tuned. BN:
batch-normalization is used as the first component in the output layer. DO:
dropout is used in all layers (the dropout probability is 0.4, which is the optimal
value that was found in the dropout tuning experiments). Bal: the loss with
balanced weights is used in training. For reference, the GOP system has 1-AUC
of 0.286 and MinCost of 0.801. All the models shown were trained with the

learning rate schedule covered in section

4.5 Final results against GOP

Figure [4.7] shows the results on the 20 evaluation speakers for the GOP baseline and
the best fine-tuned model (referred to as LayO+1 BN DO Bal in [4.6), which we
call GOP-FT for short. The bars with a solid black line show the MinCost, where the

threshold for each phone is given by the one that optimizes the cost on the evaluation
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Fig. 4.7: ActCost (bar height) and MinCost (black lines) per phone on the evaluation data.
Values under the x-axis are the number of correctly and incorrectly pronounced
instances of each phone. Numbers on top of the GOP-FT bars are the relative
gains. The dashed horizontal line indicates the value of ActCost for a naive

system that always decides the phone was correctly pronounced.

data itself. These are optimistic estimates of the cost, since, in practice, one never
has the full evaluation data to estimate the thresholds on. The top bars, on the other
hand, are the ActCost, where the thresholds are estimated using the cross-validation
scores, as would be done in practice. We can see that the ActCost is within 10% of
the MinCost for most phones, indicating that the thresholds chosen on development
speakers generalize well to the unseen speakers. The “AY” phone is a particularly
striking exception to this, as there is a big difference between MinCost and ActCost
for this phone. The average FNR rate corresponding to these thresholds is 10%
and 13%, for the GOP and GOP-FT systems, respectively, an acceptable level for
real use scenarios [28, 29]. The average FPR is 64% for GOP and 41% for GOP-
FT, showing a large relative improvement from the fine-tuning approach where 23%
more of the incorrect pronunciations are detected as such.

Figure [4.7] shows a wide range of cost values across phones. In most cases, the
proposed fine-tuning approach leads to gains over the GOP baseline. We hypothesize
these are cases where the original ASR DNN was too permissive, allowing wrong
pronunciations to get large senone posteriors for the target phone. This is corrected
by fine-tuning since the system learns to distinguish what annotators considered
good and bad pronunciations. For a few phones, the cost degrades with fine-tuning,

though the degradation is relatively small in most cases. These might be cases where
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the model has overfitted to the training data. Again, the biggest exception to this
is phone “AY”. Finally, note that for those phones where the cost is close to or
above 1.0, the value for a naive system that always decides correct pronunciation,
the system should probably not be used in practice since it would not provide useful
information. Broadly, these results are similar to those obtained by Huang and
others in [16] and in other works on this task. Clearly, despite the gains obtained
with the proposed approach, there is still work to do to improve performance on this
task, as the performance of this system and others is still far from that of a human

teacher.

4.5.1 Phone “AY”

As mentioned, the proposed method is worse than the baseline method for the phone
“AY”, more so than for any other phone. In this section, we will analyze why this
may have happened.

In order to assess this issue, we will analyze the cases where the proposed system
made mistakes but the baseline system was right. Figure shows the scores
assigned by both systems for these cases in the evaluation data. There are 11 false

positives and 5 false negatives.
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Fig. 4.8: Scatter plot of the scores from both systems for samples of phone “AY” in the
evaluation data where the fine-tuned system was wrong and the baseline system
was right. The horizontal line represents the ActCost threshold for the fine-tuned
system and the vertical line represents the threshold for the baseline system. Dots
marked in red represent samples of incorrectly pronounced phones, while the blue
dots represent samples of correctly pronounced phones according to the ground-

truth labels.

We analyzed each of these cases to see if there was a common explanation for
the mistakes. A priori, we considered a few possibilities. Firstly, it could be that the
manual annotations themselves were wrong, and the system was right. Secondly,
it could be a problem with the forced alignments. Since the phone boundaries
used during inference are given by the forced alignments, inaccuracies of the forced
alignments will result in mistakes in the downstream network. Lastly, it could simply
be that the fine-tuned model was wrong due to over fitting to the training data or
that there were low quality samples in the test data.

After listening to the recordings and reviewing the manual annotations, we con-

cluded that the annotations were in fact correct in all cases, so the first explanation
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was ruled out. To analyze the quality of the phone boundaries given by the forced
alignments for these samples, we trimmed the recordings and listened to the audio
between these boundaries. Two of the false negatives shown in figure did in fact
have inaccurate phone boundaries. After listening to the audio, we found that one
did not include the full phone and the other included a big part of the preceding
phone, which evidently confused the model. However, there are still 14 mistakes
to account for where the forced alignments are reasonable. The best explanation
for this is that the model is indeed not fit for these samples. This may be due to
the fact that there are only 52 samples of the incorrectly pronounced class for this

phone in the training data.

4.5.2 Phone “V?”

Contrary to phone “AY”, phone “V” is a phone for which the proposed method
is much better than the baseline method in terms of ActCost and MinCost on the
evaluation data. In this section we will analyze why this improvement might have
occured.

Figure 4.9 shows the scores assigned by both systems for samples in the eval-
uation data where the fine-tuned system was right and the baseline system was
wrong. The mistakes made by the GOP system are mostly false positives (76 out
of the 85 mistakes), meaning that the phone was incorrectly pronounced (accord-
ing to the manual annotations), but the GOP system classified them as correctly
pronounced. Hence, the focus of this analysis will be on the false positives. This
can be explained by considering that the GOP approach relies solely on the pos-
terior probabilities from the DNN acoustic model, which was trained for the ASR
task. As such, the acoustic model benefits from outputting large posterior prob-
abilities for phones that do not sound perfect, since this allows the ASR system
to recognize phones correctly even if the audio is noisy or low-quality. An ASR
system can benefit from a “wide” acoustic model. However, this means that also

slightly incorrectly pronounced phones can get large posterior probabilities, which
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Fig. 4.9: Scatter plot of the scores from both systems for samples of phone “V” in the eval-
uation data where the fine-tuned system was right and the baseline system was
wrong. The horizontal line represents the ActCost threshold for the fine-tuned
system and the vertical line represents the threshold for the baseline system.
Dots marked in red represent samples of incorrectly pronounced phones, while

the blue dots represent samples of correctly pronounced phones.

defeats the purpose of using them to decide if a phone is correctly pronounced or not.
This possible downside of the GOP method was already mentioned in section [2.4]
We hypothesize that the fine-tuned model was able to better distinguish between
correctly and incorrectly instances of phone “V” thanks to having seen what mis-
pronounced instances of this phone look like in Argentine speakers during training,

thereby learning to reject them.
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In this work we present a simple transfer-learning approach for pronunciation scor-
ing, where the DNN acoustic model from an ASR system is fine-tuned for the task
of detecting correctly versus incorrectly pronounced phones by changing only the
output layer’s architecture and training it on non-native data labelled with pronun-
ciation quality. The motivation for the transfer-learning approach (as opposed to
training an entirely new model from a random start) is that non-native datasets
designed for pronunciation scoring are very scarce. To our knowledge, EpaDB is
the only one designed for Argentinian speakers (or spanish speakers in general). By
fine-tuning a pre-trained acoustic model, we can take advantage of what the model
has already learnt on a large amount of native data, getting a head start. This is
possible because the ASR task is tightly related to the pronunciation scoring task.
On the other hand, training a neural network as big as the one we fine-tuned from
a random start would have been impossible with the amount of data available.

We explored several approaches for fine-tuning. The largest gains were shown
using batch normalization and dropout. Unfreezing the last hidden layer in the
DNN also provided an additional substantial improvement in performance compared
to training only the new output layer. We also found small but consistent gains
by using a loss function normalized by the amount of samples of each class in a
batch to balance the contribution of each class to the loss during training. Finally,
we proposed the use of a cost function designed to encourage low false correction
rates to evaluate the system’s performance, something the community agrees to be
essential for the practical use of systems intended for education. We show that our
best fine-tuned model is, on average, 20% better in terms of cost compared to a
state-of-the-art GOP system that uses the same acoustic model.

We believe there are several improvements that could be made to the method

proposed in this work. For instance, the loss is currently only computed for each

45
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frame individually. However, each phone in an utterance spans several frames, so
we could calculate the loss for the whole phone instance by averaging the model’s
outputs for all the frames spanned by it and then do back-propagation based on the
loss for that average of phone-level output values. This could potentially lead to a
more robust loss function, as some of the loss values for individual frames may not be
very representative of the quality of the model’s prediction across the whole phone
instance. This may specially be true for frames that are close to phone boundaries,
due to inaccuracies in the aligner. In the end, it is the phone-level prediction that
matters for this task, and not the prediction for each frame. Thus, intuitively, it
would be better to optimize the model as an end-to-end system, giving good phone-
level scores directly instead of frame-level scores. We could also try using attention
to give some frames more weight than others when calculating the phone-level scores.

Another aspect that could be further explored is the model’s architecture. It
would be interesting to see, for instance, if we can obtain similar or better results
using a smaller ASR model, such as a small TDNN. The architecture of the model we
fine-tuned in this work is considerably large. This may be justified for the ASR task,
but we believe it may be unnecessary for pronunciation scoring, which is explored in
Cyntia Bonomi’s thesis [30]. Furthermore, if the layers in the model we fine-tune had
fewer nodes, it may be possible to fine-tune three or more layers with the amount
of training data available, which we found to be worse than training just two layer
in this case. We could also try adding more than one new layer to the end of the
acoustic model.

As mentioned in chapter [4], although we saw significant improvements compared
to the baseline method, this system’s performance is still not good enough to be
used in a real scenario, as is the case with state-of-the-art systems for this task in
general. There is still much work to be done in phone-level pronunciation scoring,
but we think these systems will eventually work well enough to be an useful tool for

language learning.
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